Меню

Как эбу определяет вмт

Motorhelp.ru диагностика и ремонт двигателя

Основы теории двигателя внутреннего сгорания. Часть 2

Структурная схема типовой электронной системы управления двигателем

Поскольку работа всех систем управления впрыском топлива, которые будут рассматриваться ниже, так или иначе определяется работой ЭБУ, есть смысл сначала, объяснить работу всей системы электронного управления двигателя, а потом рассмотреть отличия и методы диагностики различных систем впрыска. Структурная схема типовой системы управления двигателем изображена на рисунке.
В электронную систему управления двигателя, кроме самого ЭБУ, входят датчики, которые подразделяются на аналоговые и цифровые. Расположение датчиков на двигателе показано на рисунке ниже.

Аналоговые датчики – это датчики, выходным параметром которых является величина напряжения. К ним относятся:
— датчик положения дроссельной заслонки ДПДЗ (поз. 2). Представляет собой потенциометр, движок которого механически соединен с дроссельной заслонкой. При повороте дроссельной заслонки меняется положение движка потенциометра, а следовательно, и выходное напряжение. По величине и скорости изменения этого напряжения ЭБУ определяет степень нажатия на педаль газа;
— датчик абсолютного давления в трубопроводе (датчик МАР) (поз. 21) – это кремниевый кристалл, на поверхности которого сформирован мостик сопротивлений. Ток через мостик изменяется под действием деформаций (пьезорезистивный эффект), вызванных изменением давления. Этот ток усиливается и вводится температурная компенсация. Датчик измеряет изменение давления во впускном трубопроводе, которое зависит от изменения нагрузки двигателя и скорости автомобиля, и преобразует его в напряжение на выходе.
Датчик МАР также используется для измерения барометрического давления при запуске двигателя и других определенных условиях, что позволяет ЭБУ автоматически регулировать качество горючей смеси. ЭБУ подает на вход датчика МАР напряжение 5 В и отслеживает напряжение на линии сигнала. Датчик связан с «массой» через переменный резистор. Сигнал с датчика МАР влияет на подачу топлива и опережение зажигания, определяемые ЭБУ.
— датчик температуры поступающего воздуха (поз. 19) сделан на базе терморезистора с отрицательным коэффициентом сопротивления. По его показаниям ЭБУ корректирует объем впрыска топлива, так как воздух меняет вес в зависимости от температуры.
— датчик температуры охлаждающей жидкости расположен на рубашке охлаждения двигателя (поз. 7) и аналогичен датчику температуры воздуха. По его сигналу ЭБУ оценивает температуру двигателя и обеспечивает обогащение топливной смеси при запуске холодного двигателя.
К цифровым датчикам относятся датчики, выходной сигнал которых имеет форму импульсов. Это следующие датчики:
— датчик скорости и положения коленчатого вала (поз. 3). Работа датчика основана на эффекте Холла. По частоте и фазе выходных импульсов ЭБУ определяет скорость вращения и положения коленвала в конкретной точке. Также при поступлении импульсов с датчика ЭБУ получает информацию о прокрутке двигателя. Если сигнала нет, то подачи бензина не происходит и двигатель не заведется. Тоже происходит, когда частота вращения коленатого вала превышает допустимую.
— датчик положения распределительного вала (поз. 1) определяет верхнюю мертвую точку в первом цилиндре на такте сжатия, и, получив сигнал с этого датчика ЭБУ определяет последовательность впрыска топлива.
— датчик скорости автомобиля представляет собой язычковое реле. Оно встроено в спидометр и на выходе имеет последовательность импульсов, частота которых пропорциональна скорости вращения привода прибора.
— датчик детонации (поз. 20) подсоединен к блоку цилиндров и отслеживает возникновение детонации в двигателе. Детонационные вибрации фиксируются чувствительным пьезоэлементом.
При возникновении детонации время опережения зажигания будет корректироваться системой, чтобы предотвратить детонацию.
— датчик кислорода – λ-зонд устанавливается в выпускной системе. Он выдает данные о концентрации кислорода в отработанных газах. В датчике используется сильная зависимость ЭДС твердотелого гальванического элемента из двуокиси циркония или титана от концентрации кислорода. Такая электрохимическая ячейка, реагируя на атомы кислорода, создает на полюсах разность потенциалов до 1 В. Это напряжение является управляющим. Оно поступает в ЭБУ, которое корректирует состав ДВС до тех пор, пока в отработанных газах не останется свободного, не вступившего в реакцию кислорода, т.е. добивается стехиометрического состава смеси.

Описание работы электронного блока управления
Так как сигналы, поступающие с датчиков, не годятся для непосредственной обработки в центральном процессоре, который понимает, как правило, только последовательность прямоугольных TTL импульсов, информация датчиков проходит дополнительную обработку. При этом сигналы аналоговых датчиков преобразуются в цифровой вид с помощью аналого-цифрового преобразователя (АЦП). Сигналы цифровых датчиков тоже нуждаются в обработке, поскольку форма и амплитуда сигнала, получаемая с них, тоже отличается от нужного вида. Поэтому информация от этих устройств проходит через систему обработки входных сигналов, где импульсы, генерируемые датчиками приводятся к виду TTL импульсов.
Сигнал с датчика детонации проходит отдельную обработку и поступает на специальный восьмиразрядный контроллер. После чего обработанный цифровой сигнал подается на центральный процессор, который получив эти данные, а также проанализировав показания датчиков положения коленатого вала, распредвала, определяет цилиндр в котором происходит детонация и производит изменения количества впрыска в конкретных форсунках или увеличивает угол опережения зажигания.
Структурная схема центральной ЭВМ стандартна для подобных устройств. Она состоит из:
— центрального процессора,
— оперативного запоминающего устройства (ОЗУ), в котором содержится информация, необходимая для текущей работы двигателя,
— постоянного запоминающего устройства (энергонезависимое ПЗУ). В нем содержится вся информация о параметрах автомобиля – тип двигателя, его параметры, установочный угол опережения зажигания, параметры системы питания, тип используемого топлива, нормальные показания датчиков, коды противоугонного устройства и многое другое.
Обрабатывая показания датчиков и сравнивая их значения с данными, хранящимися в ОЗУ и ПЗУ, процессор осуществляет необходимую коррекцию работы систем двигателя. Воздействовать непосредственно на исполнительные механизмы центральный контроллер не может, поскольку токи переключателей достаточно велики и могут вывести из строя микросхему, поэтому используется система обработки выходных сигналов. Она состоит из цифрово-аналогового преобразователя (ЦАП), предназначенного для перевода цифровых сигналов центральной ЭВМ в сигналы, пригодные для работы микросхем-драйверов. Эти микросхемы в соответствии с полученной информацией воздействуют на мощные электронные транзисторные ключи, которые и запускают исполнительные внешние устройства.
Для связи и синхронизации работы ЭБУ с внешними электронными устройствами – контроллерами автоматической коробки передач, автоблокировочной системы, климат контроля, устройств диагностики, используется особый протокол передачи данных, поддерживаемый специальным контроллером.
Питание ЭБУ производится от бортовой электрической сети. Напряжение 12 поступающее на вход преобразуется в стабилизированное напряжение 5 В внутренним источником питания. К исполнительным устройствам относятся:
— Схема зажигания, в которой замыкание и размыкание катушек зажигания происходит ключами ЭБУ в зависимости от сигналов, поступающих на них с центрального контроллера.
— Механизмы управления частотой вращения холостого хода (Механизм ISC) имеет две катушки, управляемые раздельно с помощью инверсных сигналов, поступающих с ЭБУ и обеспечивающих взаимодействие электромагнитных сил на катушках. Результатом такого взаимодействия будут различные углы поворота шагового электродвигателя. При наличии механизма управления частотой вращения холостого хода организуется перепускной шланг, подключенный параллельно дроссельной заслонке.
— Клапаны (соленоиды) инжекторов (поз. 18). Инжекторы впрыскивают топливо по сигналам, поступающим с ЭБУ. Количество топлива, впрыскиваемого инжектором, определяется временем, в течении которого подается напряжение на электромагнитный клапан. Меняя время открытия инжекторов, ЭБУ регулирует количество и качество смеси, добиваясь максимальной мощности работы двигателя во всех режимах.
— Для уменьшения количества вредных импульсов в современных автомобилях применяются различные экологические системы. Они воздействуют на двигатель путем дожигания паров бензина, рециркуляцией отработанных газов, подачей дополнительного воздуха. Подробно о них я расскажу в следующих статьях.
Во всех современных двигателях предусмотрено подключение диагностического сканера, работающего по протоколу OBD-2. Для этого в салоне автомобиля предусмотрен специальный диагностический разъем, к которому подключается сканер С его помощью можно произвести полную диагностику автомобиля, считать ошибки, просмотреть в графическом виде основные параметры.

Функционирование ЭБУ в различных режимах работы двигателя.
Работа ЭБУ будет описана для распределенной импульсной системы впрыска, применяемой в четырехцилиндровом двигателе. Она наиболее часто используется в современных автомобилях среднего класса. В этой системе количество топлива, подаваемое форсунками, регулируется импульсным сигналам на соленоиды инжекторов. ЭБУ отслеживает данные о состоянии двигателя, рассчитывает потребность в бензине и определяет необходимое время открытия форсунок. Для увеличения подачи топлива длительность импульса увеличивается, а для уменьшения сокращается.
Контроллер ЭБУ оценивает результаты своих действий с помощью датчиков, запоминает ошибки и вводит коррективы в свою работу. Самообучение процессора является непрерывным и действует в течении всего срока службы автомобиля.
Подача топлива происходит по разным методам:
— Синхронному, когда впрыск топлива происходит при определенном положении коленчатого вала.
— Асинхронному, т.е. без синхронизации с вращение коленчатого вала.
Наиболее часто применяется синхронный способ подачи топлива. Асинхронный используется в основном при пуске двигателя и режиме ускорения.
Форсунки включаются попарно и поочередно: сначала форсунки 14 цилиндров, а после поворота коленчатого вала на 180º форсунки 2 и 3 цилиндра. Таким образом каждая форсунка включается один раз за полный оборот коленчатого вала два раза за полный цикл работы двигателя.
Количество впрыснутого топлива определяет ЭБУ в зависимости от состояния двигателя и следующих режим работы:
1.Первоначальный впрыск топлива происходит, когда коленчатый вал начинает прокручивается стартером. При этом на ЭБУ происходит первых импульс от датчика вращения коленчатого вала. Получив этот сигнал, ЭБУ дает команду на включение сразу всех форсунок, чем ускоряется пуск двигателя. Такая команда следует каждый раз при пуске двигателя. Причем время открытия форсунок зависит от температуры: на холодном двигателя импульс длиннее, на горячем короче. После первоначального впрыска ЭБУ переходит в синхронный режим управления форсунками.
2.Пуск двигателя. При включении зажигания контроллер дает команду на включение реле бензонасоса для создания давления в магистрали подачи топлива к топливной рампе. Соотношение воздух/топливо при пуске ЭБУ определяет к зависимости от показания датчиков температуры охлаждающей жидкости и входящего воздуха. После начала вращения коленвала ЭБУ работает в пусковом режиме, пока скорость не превысит 400 об/мин, или не наступит режим продувки «залитого» двигателя.
3.Режим продувки двигателя. Если двигатель «залит» топливом (т.е. топливо намочило свечи зажигания), он может быть очищен путем полного открытия дроссельной заслонки при одновременном проворачивании коленчатого вала. При этом ЭБУ не подает импульсы впрыска на форсунки и свечи должны очиститься. Процессор поддерживает этот режим до тех пор, пока обороты коленчатого вала ниже 400 об/мин, и датчик положения дроссельной заслонки показывает, что она полностью открыта. Если Дроссельная заслонка удерживается почти полностью открытой при пуске двигателя, то он не запуститься, т. к. при полностью открытой дроссельной заслонке импульсы вспрыска на форсунку на подаются.
4.Рабочий режим управления топливоподачей. После пуска двигателя (обороты превышают 400 об/мин) ЭБУ переходит в рабочий режим. При этом контроллер рассчитывает длительность импульса на форсунки по сигналам датчика положения коленчатого вала, массового расхода воздуха, датчика температуры охлаждающей жидкости и положения дроссельной заслонки. При холодном двигателе (менее 50º С) система работает без обратной связи (датчик кислорода отключен). Это необходимо в связи с тем, что при прогреве двигателя требуется более богатая смесь и соотношение воздух/топливо будет отличаться от стехиометрического. Этот же режим включается при резком ускорении и в мощностном режиме.
5.Рабочий режим для систем вспрыска с обратной связью. В этом режиме на работу ЭБУ влияют показания датчика кислорода. От его показаний зависит длительность импульсов вспрыска. При этом если сигнал имеет низкое напряжение (обедненная смесь) или высокое напряжение (обогащенный состав смеси), то корректировка продолжается до достижения напряжения сигнала, соответствующему стехиометрическому составу смеси (режим постоянных переключений, свидетельствующих о работе датчика в нормальных условиях). Считается нормальным диапазоном регулировки топливоподачи по замкнутому контуру в пределах 20% коррекции топливной смеси. Значения выходящие за этот диапазон являются признаками неисправности компонентов системы. Если корректировка топливоподачи в режиме замкнутого контура вышла за пределы регулирования, то через какое-то время ЭБУ определит, что работа системы подачи топлива нарушилась и контроллер дает команду на включение лампы «проверь двигатель» и внесет в память соответствующий код ошибки, например, «обогащенная смесь». При этом система программно переключается в режим разомкнутого контура. В этом случае коррекцию топливной смеси ЭБУ осуществляет в соответствии показания датчиков расхода воздуха и частоты вращения коленвала, пользуясь с заложенными в ОЗУ ЭБУ данными.
6.Режим обогащения при ускорении. ЭБУ контролирует не только положение дроссельной заслонки, но и скорость ее перемещения. При резком изменении показания датчика процессор выдает команду о переходе в кратковременный режим резкого обогащения смеси. При этом длительность импульсов на форсунках увеличивается, что обеспечивает автомобилю быстрое ускорение. Датчик кислорода при этом отключается.
7.Режим мощностного обогащения. Для достижения максимальной мощности требуется обогащенная горючая смесь, и ЭБУ изменяет соотношение воздух/топливо приблизительно 12/1. Система в этом случае работает в режиме разомкнутого контура.
8.Режим обеднения при торможении. При торможении автомобиля с закрытой дроссельной заслонкой может увеличиться выброс в атмосферу токсичных веществ. Для предотвращения этого ЭБУ уменьшает подачу топлива в уменьшении угла открытия дроссельной заслонки и количества расхода воздуха.
9.Режим отключения подачи топлива при торможении двигателем. При торможении двигателем, т.е. при движении со включенной передачей и закрытой дроссельной заслонкой, ЭБУ может на короткое время полностью отключать импульсы впрыска. Условиями отключения импульсов вспрыска при торможении являются:
— Закрытая дроссельная заслонка.
— Скорость автомобиля выше 30 км/ч.
— Частота вращения коленчатого вала выше 1800 об/мин.
— Температура охлаждающей жидкости не ниже 20ºC.
ЭБУ отменяет режим отключения подачи топлива при торможении, если изменились следующие параметры.
— Дроссельная заслонка открылась на 2% и более.
— Скорость автомобиля ниже 30 км/час.
— Частота вращения коленчатого вала ниже 1800 об/мин.
— Выключение сцепление (резкое падение частоты вращения коленчатого вала).
10.Компенсация падение напряжения питания в бортовой сети. При падении напряжения схема зажигания может давать слабую искру, а время срабатывания клапанов форсунки увеличивается. ЭБУ компенсирует это увеличением длительности открытия форсунок и времени замкнутого состояния первичных обмоток катушек зажигания.
11.Режим аварийного отключения подачи топлива. При включенном зажигании топливо форсункой не подается, во избежание самовоспламенении смеси при перегретом двигателе. Кроме того импульсы вспрыска не подаются, если ЭБУ не получает сигналов с датчика положения коленчатого вала, что воспринимается как остановка ДВС. Отключение питания также происходит при превышении предельно допустимой частоты вращения коленчатого вала двигателя, равной примерно 6500 об/мин, для защиты двигателя от перегрузки.
12.Управление электровентилятором системы охлаждения. Электровентилятор включается и выключается ЭБУ в зависимости от температуры двигателя, частоты вращения коленчатого вала, работы кондиционера и других факторов. Электровентилятор включается с помощью вспомогательного реле в том случае, если температура охлаждающей жидкости превысит 101ºC или будет дан запрос на включение кондиционера. Выключение происходит после падения температуры охлаждающей жидкости ниже 97ºC, отключения кондиционера, или выключения двигателя. (Температура включения и выключения вентилятора зависит от программы в ЭБУ двигателя.)
13.Обнаружение и регистрация неисправностей. ЭБУ постоянно выполняет самодиагностику по некоторым функциям управления. При обнаружении неисправности ЭБУ заносит код ошибки в память, и включатся контрольная лампочка «CHECK ENGINE». О том, как правильно диагностировать неисправности в этих системах будет подробно рассказано в следующих статьях.

Читайте также:  Двухходовые шаровые краны с электроприводом

Как провести диагностику двигателя автомобиля своими силами? Читайте в следующем материале:

Источник

Запускаем и поехали

Как ЭБУ управляет двигателем

Оглавление

Режимы работы электронного блока управления

Во время пуска мотора, ЭБУ включает реле электромотора
бензонасоса, который нагнетает давление в топливной магистрали.
ЭБУ проверяет температуру охлаждающей жидкости и
расчитывает правильное соотношение воздуха и топлива для запуска.

После начала вращения коленчатого вала ЭБУ работает в пусковом режиме, пока
обороты не превысят 400 об/мин или не наступит режим продувки «залитого»
двигателя.

Режим продувки двигателя. «Залитый топливом двигатель», может быть очищен
путем полного открытия дроссельной заслонки при одновременном проворачивании
коленчатого вала. При этом электронный блок управленияния не подает импульсы
впрыска на форсунки, и свечи должен просушиться. ЭБУ поддерживает этот режим
до тех пор, пока обороты двигателя ниже 400 об/мин, и датчик положения
дроссельной заслонки показывает, что она почти полностью открыта
(более 75 %).

Рабочий режим для системы впрыска без обратной связи
После пуска двигателя (обороты более 400 об/мин) ЭБУ управляет системой
подачи топлива в рабочем режиме. В этом режиме ЭБУ рассчитывает длительность
импульса на форсунки по сигналам от датчика положения коленчатого вала,
датчика массового расхода воздуха, датчика температуры охлаждающей
жидкости и датчика положения дроссельной заслонки.

Рассчитанная длительность импульса впрыска может давать соотношение воздуха и
топлива, отличающееся от 14,7:1. Примером может служить непрогретое состояние
двигателя, так как при этом для обеспечения хороших ездовых качеств требуется
обогащенная смесь.

Рабочий режим для системы впрыска с обратной связью. В этой системе ЭБУ
сначала рассчитывает длительность импульса на форсунки на основе сигналов от
тех же датчиков, что и в системе впрыска без обратной связи. Отличие состоит в
том, что в системе с обратной связью ЭБУ еще использует сигнал от датчика
кислорода для корректировки и тонкой регулировки расчетного импульса, чтобы
точно поддерживать соотношение воздуха и топлива на уровне (14,6…14,7):1.

Читайте также:  Как поменять вин в эбу

Работа системы с последовательным(фазированным) впрыском топлива.
ЭБУ включает форсунки последовательно, в порядке зажигания по цилиндрам (1-3-4-2).
Датчик фаз дает ЭБУ сигнал о том, когда 1-й цилиндр находится в ВМТ в
конце такта сжатия. На основании этого сигнала ЭБУ рассчитывает момент
включения каждой форсунки, причем каждая форсунка впрыскивает топливо один
раз за два оборота коленчатого вала двигателя, т.е. за один полный рабочий
цикл. Такой метод позволяет более точно дозировать топливо по цилиндрам и
понизить уровень токсичности отработавших газов.

Режим обогащения при ускорении. ЭБУ следит за резкими изменениями положения
дроссельной заслонки (по датчику положения дроссельной заслонки) и за
сигналом датчика массового расхода воздуха и обеспечивает подачу добавочного
количества топлива за счет увеличения длительности импульса впрыска. Режим
обогащения при ускорении применяется только для управления топливоподачей в
переходных условиях (при перемещении дроссельной заслонки).

Режим мощностного обогащения. ЭБУ следит за сигналом датчика положения
дроссельной заслонки и частотой вращения коленчатого вала для определения
моментов, в которые водителю необходима максимальная мощность двигателя. Для
достижения максимальной мощности требуется обогащенная горючая смесь, и ЭБУ
изменяет соотношение воздуха и топлива приблизительно до 12:1. В системе
впрыска с обратной связью в этом режиме сигнал датчика концентрации кислорода
игнорируется, так как он будет указывать на обогащенность смеси.

Режим обеднения при торможении. При торможении автомобиля с закрытой
дроссельной заслонкой могут увеличиться выбросы в атмосферу токсичных
компонентов. Чтобы не допустить этого, ЭБУ следит за уменьшением угла
открытия дроссельной заслонки и за сигналом датчика массового расхода воздуха
и своевременно уменьшает количество подаваемого топлива путем сокращения
импульса впрыска.

Режим отключения подачи топлива при торможении двигателем. При торможении
двигателем с включенной передачей и сцеплением ЭБУ может на короткие периоды
времени полностью отключить импульсы впрыска топлива. Отключение и включение
подачи топлива на этом режиме происходит при выполнении определенных условий
по температуре охлаждающей жидкости, частоте вращения коленчатого вала,
скорости автомобиля и углу открытия дроссельной заслонки.

Компенсация напряжения питания. При падении напряжения питания система
зажигания может давать слабую искру, а механическое движение «открытия»
форсунки может занимать больше времени. ЭБУ компенсирует это путем увеличения
времени накопления энергии в катушках зажигания и длительности импульса
впрыска.

Соответственно, при возрастании напряжения аккумуляторной батареи (или
напряжения в бортовой сети автомобиля) ЭБУ уменьшает время накопления энергии
в катушках зажигания и длительность впрыска.

Режим отключения подачи топлива. При выключенном зажигании топливо форсункой
не подается, чем исключается самовоспламенение смеси при перегретом
двигателе.

Кроме того, импульсы впрыска топлива не подаются, если ЭБУ не получает
опорных импульсов от датчика положения коленчатого вала, т.е. это означает,
что двигатель не работает. Отключение подачи топлива также происходит при
превышении предельно допустимой частоты вращения коленчатого вала двигателя
для защиты двигателя от перекрутки.

Датчики информации и исполнительные механизмы,

определяемые и управляемые электронным блоком(ЭБУ)
Датчики информации

Датчик положения дроссельной заслонки (ДПДЗ)

– это единственный узел, который непосредственно принимает команды от водителя на
управление

двигателем ( педаль «газа», тросик от «газа» – дроссельная заслонка – ДПДЗ).
ДПДЗ измеряет положение дроссельной заслонки (ДЗ) и передает ЭБУ, в каком
положении находится ДЗ.

Датчик положения дроссельной заслонки установлен сбоку на дроссельном узле и
связан с осью дроссельной заслонки. Датчик представляет собой потенциометр,
на один конец которого подается плюс напряжения питания (5 В), а другой
соединен с массой. С третьего вывода потенциометра (от ползунка) идет
выходной сигнал к контроллеру. Когда дроссельная заслонка поворачивается (от
воздействия на педаль управления), изменяется напряжение на выходе датчика.

При закрытой дроссельной заслонке оно ниже 0,7 В. Когда заслонка открывается,
напряжение на выходе датчика растет и при полностью открытой заслонке должно
быть более 4 Вольта

Отслеживая выходное напряжение датчика, контроллер корректирует подачу
топлива в зависимости от угла открытия дроссельной заслонки. Датчик положения
дроссельной заслонки не требует никакой регулировки, так как контроллер
воспринимает холостой ход (полное закрытие дроссельной заслонки) как нулевую
отметку

Симптомы неисправности датчика положения дроссельной заслонки.

Из-за отсутствия правильного сигнала с датчика ЭБУ будет выдавать сигналы
несоответствующие реальной нагрузке на двигатель, что приведёт к появлению
детонации и перегреву.

Все остальные узлы и агрегаты в системе управления двигателем, передают
сигналы ЭБУ или принимают сигналы от ЭБУ без участия водителя.

ДПДЗ, ДЗ и регулятор холостого хода (РХХ)
вместе образуют узел дроссельной заслонки

узел дроссельной заслонки

Датчик температуры охлаждающей жидкости (ДТОЖ)

По мере нагревания ДВС, ЭБУ измеряет напряжение на выходе с ДТОЖ и,
соответственно, корректирует работу двигателя (обороты ХХ, обогащение подачи
топливной смеси, УОЗ, включение и выключение вентилятора ОЖ). Датчик
температуры ОЖДатчик температуры охлаждающей жидкости устанавливается на
выпускном патрубке системы охлаждения в потоке охлаждающей жидкости
двигателя.

Термистор, находящийся внутри датчика, является резистором с отрицательным
температурным коэффициентом при нагреве которого сопротивление уменьшается
(при –40 °С = 100 кОм и 70 Ом = 130 °С). ЭБУ подает на ДЖОТ напряжение 5 В
через резистор с постоянным сопротивлением. Температуру охлаждающей жидкости
ЭБУ рассчитывает по падению напряжения на датчике.

Выход из строя датчика температуры охлаждающей жидкости

Как ни странно поломка датчика температуры тосола, скажется на запуске
двигателя. При отсутствии сигналов с датчика температуры охлаждающей
жидкости, электронный блок управления примет температуру двигателя равную
нулю градусов Цельсия и опираясь на алгоритмы программы, которые заложены на
заводе изготовителе будет подготавливать рабочую смесь согласно этой
температуре.

Датчик положения коленчатого вала (ДПКВ)

– часто его называют датчиком синхронизации, индукционного типа,
устанавливается на передней части двигателя (а/м ВАЗ, ГАЗ, УАЗ) со
специальным диском (шкив), жестко укрепленным на коленчатом вале (КВ). ДПКВ и
шкив вместе обеспечивают угловую синхронизацию ЭБУ. Диск синхронизации
состоит из 60 зубьев, равномерно распределенных по кругу, из которых удалено
два зуба (60 – 2 = 58). Пропуск двух зубьев из 60 на диске позволяет ЭБУ
определить скорость вращения и положение КВ. Зазор между ДПКВ и вершиной зуба
диска строго определен и равен 0,8…1,0 мм. Датчик положения коленчатого вала

Датчик положения коленчатого вала:
1 – постоянный магнит; 2 – корпус; 3 –
картер двигателя; 4 – магнитомягкий сердечник;
5 – обмотка; 6 – зубчатое
колесо с точкой отсчета

После включения замка зажигания ЭБУ ждет прихода импульсов с ДПКВ. Получив
импульсы от ДПКВ, ЭБУ синхронизирует положение и скорость вращения КВ и выдает
импульсы для топливных форсунок и модуля зажигания.

Запуск двигателя и ровная работа означает, что программа ЭБУ правильно определила все
58 зубьев и два пропуска в расчетном временном диапазоне. Если есть сбои импульсов от
ДПКВ, то, естественно, это приводит к неустойчивой работе или сбоям в работе ДВС (сбои
управления форсунками и модулем зажигания). Увидев сбои от ДПКВ, ЭБУ пытается
пересинхронизировать процесс управления.

Неисправности датчика положения коленчатого вала

Это единственный датчик, который устанавливается на всех инжекторных двигателях, из-за
поломки которого автомобиль будет стоять как вкопанный и доехать до ближайшего СТО
своим ходом не удастся.

Основными признаками неисправности датчика положения коленчатого вала являются:

— при повороте ключа зажигания, двигатель крутит в «холостую»
— если датчик вышел из строя при движении автомобиля, то двигатель глохнет и завести
его уже невозможно.

Ремонт датчика положения коленвала невозможен, лечиться только заменой.

Датчик фаз (ДФ) или датчик положения распределительного вала (ДПРВ)

– представляет собой полупроводниковый прибор, его принцип основан на эффекте Холла.
Датчик положения распределительного вала

ДФ выдает один импульс за один цикл работы (два оборота КВ = четырем тактам).
Программа, получив импульс от ДФ, определяет ВМТ такта сжатия первого цилиндра и
синхронизирует управление форсунками. Благодаря сигналам от ДФ, ЭБУ точнее дозирует
качество смесеобразования (фазированный впрыск). Во время фазированного впрыска каждая
форсунка получает один импульс за один цикл. При выходе из строя ДФ ЭБУ определяет
ошибку и переходит на попарно-параллельный впрыск топлива

Неисправность датчика фаз (распределительного вала)

При выходе из строя датчика фаз, на автомобилях семейства ВАЗ, подача топлива
осуществляется в аварийном режиме. Подача топлива в инжекторный двигатель происходит
по попарно-паралельному алгоритму, при котором отдельно взятая форсунка впрыскивает
топливо в два раза чаще, чем в рабочем режиме.

Читайте также:  Искра стартеры на калину

Датчик фаз

Основными симптомами, указывающими, что вам предстоит замена ДПРВ является:
затрудненный пуск, выхлопные газы теряют свою прозрачность, увеличение расхода топлива
(единственный симптом, который заставляет водителя обратиться на СТО, так как на слух
определить, что двигатель требует вмешательства нет), возможны сбои в системе
самодиагностики ВАЗ. Как временный вариант лечения данной проблемы мы можем
посоветовать провернуть датчик на несколько градусов вдоль своей оси, после чего
надежно закрепить.

Датчик скорости автомобиля (ДС)

— устанавливается на коробке передач (КПП). Датчик скорости Его задача – отправлять
импульсы ЭБУ за время определенного оборота колеса.

Эти импульсы нужны не только для определения скорости движения автомобиля, но и
программе ЭБУ для выбора режима работы. Если нет обрыва или замыкания в цепи ДС, то
ЭБУ не может определить состояние автомобиля (в движении машина или стоит). Система
самодиагностики ЭБУ распознает выход из строя ДС только при наличии больших оборотов в
двигателе в сочетании с большой нагрузкой. В этом случае записывается код ошибки ДС.

Датчик кислорода (ДК), или лямбда зонд

устанавливается на выхлопной системе. Его функция в работе ЭБУ – определение наличия
кислорода в отработавших газах (для поддержания стехиометрического со- става смеси).


Датчик кислорода

Для нормальной работы датчика кислорода нужна температура не менее 350 °С. Чтобы
ускорить нагрев датчика кислорода, особенно после пуска двигателя, в датчик
вмонтирован нагревательный элемент. ЭБУ имеет дополнительный модуль прогрева датчика,
который включает подогрев и определяет готовность ДК к работе. На поверхности ДК
происходит реакция окисления несгоревшего топлива. Специальный слой способен отдавать
или восстанавливать ионы кислорода, тем самым информируя ЭБУ о богатой или бедной
смеси. ЭБУ, принимая сигналы ДК, уменьшает или увеличивает время открытия форсунок.
Один из важных факторов для правильной работы ДК – сообщение с атмосферным воздухом
через свой жгут проводов.

Разность концентрации кислорода в атмосфере (поступающий через жгут проводов) и на
поверхности рабочей части (выхлоп отработавших газов) является причиной меняющегося
выходного сигнала датчика. В бедной смеси (избыток воздуха) рабочую поверхность ДК
восстанавливает кислород – напряжение падает. В богатой смеси топливо окисляется
кислородом за счет поверхности датчика – напряжение растет. Выходное напряжение ДК
напрямую связано с процессом окисления несгоревшего топлива в выхлопной системе.

Неправильное показание ДК бедной смеси, когда в действительности в выхлопной системе
богатая смесь, обусловлено загрязнением сажей рабочей поверхности ДК. Рабочая
поверхность ДК покрывается сажей, и реакция окисления не происходит. ЭБУ отдает
команду на увеличение времени открытия форсунок, тем самым обогащая и так богатую
смесь. Или наоборот.

При загрязнении канала
сообщения ДК с атмосферой, ДК «видит» бедную смесь и ЭБУ еще сильнее обедняет смесь,
уменьшив время открытия форсунок. Такие неполадки ДК легко исправимы. В первом случае
поездка на стабильных оборотах (трасса) 50–60 км/час. Обычно после такой поездки
неисправный ДК начинает работать нормально. Во втором случае хватает продувки жгута
проводов (на стыке с ДК) сжатым воздухом

Датчик массового расхода воздуха

Датчик массового расхода воздуха (ДМРВ)
расположен между воздушным фильтром и шлангом впускной трубы.
В нем находятся температурный датчик и нагревательный резистор. Проходящий воздух
охлаждает один из датчиков, а электронная схема датчика преобразует эту разность
температур в выходной сигнал для электронного блока управления. В разных вариантах
систем впрыска топлива могут применяться датчики массового расхода воздуха двух типов.
Они отличаются по устройству и по характеристике выдаваемого сигнала, ко- торый может
быть частотным или аналоговым.

В первом случае в зависи- мости от расхода воздуха
меняется частота сигнала, а во втором случае – напряжение. Датчик массового расхода
воздуха ЭБУ использует информацию от датчика массового расхода воздуха для определения
длительности импульса открытия форсунок.

Неисправности датчика массового расхода воздуха

p10

Как правило, ДМРВ не выходит из строя за одну поездку, он умирает постепенно, подаче
после полного выхода из строя автомобиль может проехать не одну сотню километров.
Первыми признаками начала «старения» датчика массового расхода воздуха является
необходимость игры педали газа при запуске двигателя. В дороге симптомы будут
проявляться снижением мощности (автомобиль словно едет на ручном тормозе),
увеличивается расход бензина, а выхлопная труба покрывается незначительным слоем
копоти. ДМРВ

Причина по которой выходит из строя датчик расхода воздуха банальна: владелец
автомобиля экономит на сервисном обслуживании, устанавливая дешёвые воздушные фильтры.

Вследствие чего на чувствительном элементе датчика оседает различные загрязнения.
Некоторые умельцы пытаются промыть ДМРВ в карбклинере, но в большинстве случаев датчик
все равно идёт на свалку (касается только датчиков Бош, Хитачи выдерживают промывку).

Датчик детонации (ДД) прикреплен к верхней части блока цилиндров и улавливает
аномальные вибрации (детонационные удары) в двигателе. Чувствительным элементом датчика
является пьезокристаллическая пластинка.

Датчик детонации

При детонации на выходе датчика генерируются импульсы напряжения, которые увеличиваются
с возрастанием интенсивности детонационных ударов. ЭБУ по сигналу датчика регулирует
опережение зажигания для устранения детонационных вспышек топлива.

Неисправность датчика детонации.

Далее рассмотрим принципы работы Исполнительных механизмов

управления инжекторного ДВС
Исполнительные механизмы управления инжекторного ДВС от ЭБУ
Шаговое реле холостого хода (РХХ) устанавливается на узле ДЗ и обеспечивает прохождение
воздуха через байпасный канал (канал холостого хода). От сечения байпасного канала
зависит поступление воздуха в двигатель при закрытой ДЗ, что напрямую зависит от
положения вала шагового мотора (прогрев, обороты ХХ). Задача РХХ – поддержание заданных
оборотов холостого хода.

РХХ также обеспечивает:
1) прогрев холодного двигателя, поддержание повышенных оборотов и плавный сброс по мере
нагрева при закрытой ДЗ;

2) при открытии ДЗ, воздух проходит через ДЗ и байпасный канал, т.е РХХ, должен быть
готов к резкому закрытию ДЗ, тем самым обеспечивая плавный сброс оборотов до заданного ХХ;

3) компенсационное повышение оборотов перед включением таких механизмов как
кондиционер, вентилятор системы охлаждения.Симптомы неисправности датчика холостого хода.

Выход из строя РХХ приводит к следующим сбоям системы:

1) остановка двигателя после сброса газа или невозможность работы на ХХ;
2) повышенные обороты ХХ, увеличивающиеся по мере прогревания двигателя.
Все неисправности, связанные с линией управления шагового мотора (РХХ) и самого РХХ,
легко обнаруживаются диагностическим оборудованием.

Датчик холостого хода

Симптомы, по которым можно предположить, что с датчиком не все в порядке являются:
затрудненный пуск при не нажатой педали акселератора, плавающий холостой ход. После
демонтажа с двигателя можно попытаться промыть его, если после данной операции ситуация
мне улучшилась, то смело выкидывайте его в мусорное ведро.

Электромагнитные форсунки

Топливные форсунки установлены на впускном коллекторе. Одна форсунка на каждый цилиндр.
Топливная форсунка дозирует подачу топлива под давлением во впускную трубу цилиндра по
команде контроллера. Форсунка представляет собой устройство с электромагнитным
клапаном, которое при получении электрического импульса управления с контроллера
впрыскивает топливо под давлением на тарелку впускного клапана. По истечении
электрического импульса форсунка перекрывает подачу топлива. Топливо может подаваться
двумя методами: синхронным, т.е. при определенном положении коленчатого вала, или
асинхронным, т.е. независимо или без синхронизации с вращением коленчатого вала.
Синхронный впрыск топлива – наиболее часто применяемый метод. Асинхронный впрыск
топлива применяется в основном в режиме пуска двигателя.

Электробензонасос

К Оглавлению

Электробензонасос (ЭБН) Применяется ЭБН турбинного типа. Модуль ЭБН содержит датчик
уровня топлива. Сопротивление датчика уровня (Ом) находится в приделах «min-полный бак»
– «max-пустой бак». Напряжение питания подается на ЭБН через реле, которым управляет
ЭБУ.

Модуль зажигания


содержит два мощных электронных ключа и две катушки зажигания.
Искрообразование происходит по методу «холостой искры», т.е. искра образуется
одновременно в двух цилиндрах: 1–4 и 2–3. В одном цилиндре рабочая искра, в другом –
«холостая». На 16-клапанных моторах объемом 1,6 литра используются индивидуальные
катушки зажигания на каждую свечу с фазированным управлением.

Электровентилятор


Вентилятор в системе охлаждения включается и выключается ЭБУ в зависимости от
температуры охлаждающей жидкости двигателя (от 98 до 107 °С), в зависимости от типа ЭБУ
двигателя, частоты вращения коленчатого вала, работы кондиционера (если он есть на
автомобиле) и других факторов. Электровентилятор включается вспомогательным реле,
расположенным в монтажном блоке. При работе двигателя электровентилятор включается,
если температура охлаждающей жидкости превысит 104 °С или будет дан запрос на включение
кондиционера. Электровентилятор выключается после падения температуры охлаждающей
жидкости до 101 °С, после выключения кондиционера или остановки двигателя.

Источник