Меню

Как эбу связывается с датчиком

Ремонт ЭБУ двигателя

Найдите специалиста по чип-тюнингу

Сделайте чип-тюнинг у проверенного специалиста с выдачей сертификата и возможностью манибэка.

АДАКТ против удаления корректно работающего катализатора.
Узнайте про возможные последствия для автомобиля.

Электронный блок управления двигателя (ЭБУ, ECU или, если точнее, ECM и PCM) является центром, объединяющим различные подсистемы автомобиля. От корректного функционирования данного блока зависит «жизнеспособность» всего авто: именно он управляет работой двигателя, чтобы тот выдавал оптимальную производительность. Поэтому и говорят, что двигатель является сердцем автомобиля, а ЭБУ — его мозгами.


Внешний вид ЭБУ Январь 7.2

Принцип работы ЭБУ

Блок управления представляет собой микросхему с микропроцессором и программным обеспечением. Задача ЭБУ собирать данные, обрабатывать их и отдавать команды исполнительным механизмам.

Как это происходит:

Весь этот процесс проходит в режиме реального времени и с учетом большого количества переменных.

Микропрограммы современных ЭБУ можно считывать, перепрограммировать и записывать обратно, подменяя штатную. Это дает возможность вносить значительные изменения в работу всего авто: от отключения определенных систем до установки новых (например, чтобы установить на атмосферный мотор турбокомпрессор так, чтобы ДВС при этом работал корректно).

Неисправности ЭБУ двигателя

Проблемы с блоком обычно принято делить на два типа:


Неудачное расположение ЭБУ на Ладе Калине часто приводило к попаданию в него тосола

Частые причины выхода из строя ЭБУ

В целом даже несложный с виду ремонт ЭБУ может привести к большим проблемам для автовладельцев. Например, при замене обыкновенного транзистора, который вышел из строя, можно случайно или по неопытности установить транзистор не того типа, что приведет к перегреву других элементов платы. Обычно это влечет за собой выход из строя процессора и блока в целом.


Сгоревший транзистор на контроллере Автэл М73

Также мастера, берущиеся за работу по ремонту блоков управления и не имеющие достаточного опыта и умения работы с нежной электроникой, в процессе пайки могут перегреть элементы или неверно их установить.

Признаки возможных проблем с ЭБУ

Слабых мест у блока двигателя достаточно, но также часто бывает, что проблема не в самом ЭБУ. Здесь поможет комплексная диагностика машины и проверка опытным автоэлектриком.

Что может указывать на неисправность блока двигателя:

Более явные симптомы можно определить диагностическим оборудованием: например, если появились нестираемые ошибки, перестали поступать данные от датчиков или связь с блоком вообще отсутствует.

Ремонт ЭБУ

Как указали выше, по одним только симптомам точно установить поломку блока нельзя. Поэтому перед ремонтом обязательно проводится диагностика ЭБУ, других блоков, систем и датчиков, проверка проводки. Когда точно установлено, что причина в ЭБУ и она носит не программный характер, производится ремонт:

Если проблема по программной части, разборка блока может и не потребоваться. В некоторых случаях помогает перепрошивка ЭБУ или наоборот откат к заводским настройкам. Но в любом случае точную причину можно обнаружить только после качественной диагностики и проверки осциллографом.

Если у вас возникли подозрения, что ЭБУ сбоит, обращайтесь на диагностику к нашим партнерам. Специалисты установят причину проблем и при необходимости сделают ремонт ЭБУ (как программной, так и аппаратной части). Найти ближайших партнеров АДАКТ можно на карте ниже.

Источник

Блок управления двигателя: устройство, неисправности и диагностика

Одним из важнейших элементов практически всех современных двигателей является электронный блок управления. Это название довольно длинное, так что его сокращают до ЭБУ двигателя. Блок имеет сложное устройство, а его производством занимается ограниченное число фирм. По факту, они же владеют патентами и ограничивают деятельность других фирм, но это уже другой вопрос. Грамотному автолюбителю стоит разбираться в том, что представляет собой ЭБУ двигателя, какое место в структуре автомобильных систем он занимает, какие элементы ему подконтрольны и по каким причинам он может выйти из строя. Обо всем этом – в материале Avto.pro.

Важная ремарка

Сразу отметим, что под ЭБУ понимают вообще все встраиваемые системы, которые получают управляющие сигналы от одной или сразу нескольких систем и подсистем автомобиля. Звучит довольно сложно, так что попробуем разобраться. К примеру, в большинстве автотранспортных средств используются такие управляющие системы и подсистемы:

Подробнее об устройстве ЭБУ

Как читатель наверняка знает, ЭБУ работает в тандеме со множеством датчиков. Вот несколько примеров: датчик положения дроссельной заслонки, датчик массового расхода воздуха, датчик детонации. Практически всем этим датчикам посвящены отдельные материалы раздела « Полезные советы » на Avto.pro – советуем ознакомиться с ними. А мы продолжим разбор ЭБУ.

Как устроена процессорная часть

Можно провести параллель между современным компьютером и процессорной частью ЭБУ. По факту, в ЭБУ объединяется ряд компонентов, которые в системных блок персональных компьютеров и ноутбуков идут отдельно друг от друга, но объединяются материнской платой. Здесь есть интересные особенности, но их мы рассматривать не будем – автолюбителю важно понимать, что принципиальные схемы современных электронно-вычислительных машин очень похожи друг на друга.

Как работают формирователи входных и выходных сигналов

Формирователи делятся на подтипы в зависимости от того, с какими сигналами они работают. Это связано с тем, что разные типы сигналов имеют различные параметры. Вот например:

Источник

Как эбу связывается с датчиком

Чувствительный элемент датчика кислорода находится в потоке отработавших газов. При достижении датчиком рабочих температур, превышающих 360 град. С, он начинает генерировать собственную ЭДС, пропорциональную содержанию кислорода в отработанных газах. На практике, сигнал ДК (при замкнутой петле обратной связи) представляет собой быстро изменяющееся напряжение, колеблющееся между 50 и 900 милливольт. Изменение напряжения вызвано тем, что система управления постоянно изменяет состав смеси вблизи точки стехиометрии, сам ДК не способен генерировать какое-либо переменное напряжение.

Выходное напряжение зависит от концентрации кислорода в отработавших газах в сопоставлении с опорными данными о содержании кислорода в атмосфере, поступающими с элемента конструкции датчика, служащего для определения концентрации атмосферного кислорода. Этот элемент представляет собой полость, соединяющуюся с атмосферой через небольшое отверстие в металлическом наружном кожухе датчика. Когда датчик находится в холодном состоянии, он не способен генерировать собственную ЭДС, и напряжение на выходе ДК равно опорному (или близко к нему).

Для ускорения прогрева датчика до рабочей температуры он снабжен электрическим нагревательным элементом. Различают датчики с постоянным и импульсным питанием нагревательного элемента, в последнем случае, подогревом ДК управляет ЭБУ. Электронный блок управления постоянно подаёт на цепь датчика стабильное опорное напряжение 450 милливольт. Непрогретый датчик имеет высокое внутреннее сопротивление и не генерирует собственную ЭДС, поэтому, ЭБУ «видит» только указанное стабильное опорное напряжение. По мере прогрева датчика при работающем двигателе его внутреннее сопротивление уменьшается, и он начинает генерировать собственное напряжение, которое перекрывает выдаваемое ЭБУ стабильное опорное напряжение. Когда ЭБУ «видит» изменяющееся напряжение, ему становится известным, что датчик прогрелся, и его сигнал готов для применения в целях регулирования состава смеси.

Читайте также:  Как установить 2 глушителя форд фокус 2

График выходного сигнала Датчика Кислорода

Для замены вышедших из строя оригинальных лямбда-зондов фирма Bosch выпускает специальную серию из 7 универсальных датчиков, которые перекрывают практически весь диапазон применяемых штатно датчиков. Информация по ним ЗДЕСЬ.

КАТАЛИТИЧЕСКИЙ НЕЙТРАЛИЗАТОР

Спорную по некоторым утверждениям, но, безусловно, интересную статью посвященную катализаторам читайте ЗДЕСЬ.

ДАТЧИК МАССОВОГО РАСХОДА ВОЗДУХА

Существует довольно много различных типов датчиков массового расхода воздуха (ДМРВ): механические (флюгерного типа), ультразвуковые, термоанемометрические и т.д.

В данном разделе мы рассмотрим устройство термоанемометрического датчика HFM‑ 5 производства Bosch, устанавливаемого на автомобили ВАЗ. Чувствительный элемент датчика представляет собой тонкую пленку, на которой расположено несколько температурных датчиков и нагревательный резистор. В середине пленки находится область подогрева, степень нагрева которой контролируется с помощью температурного датчика. На поверхности пленки со стороны потока воздуха и с противоположной стороны симметрично расположены еще два термодатчика, которые при отсутствии потока воздуха регистрируют одинаковую температуру. При наличии потока воздуха первый датчик охлаждается, а температура второго остается практически неизменной, вследствие подогрева потока воздуха в зоне нагревателя. Дифференциальный сигнал обоих датчиков пропорционален массе проходящего воздуха. Электронная схема датчика преобразует этот сигнал в постоянное напряжение, пропорциональное массе воздуха. Такая конструкция получила название Hot Film (HFM), к ее достоинствам можно отнести высокую точность измерения и способность регистрировать обратный поток воздуха, к недостаткам – низкую надежность в условиях загрязнения и попадания влаги.

В старых системах (ЭБУ Январь‑ 4 и GM-ISFI- 2 S) применялись другие термоанемометрические ДМРВ, чувствительные элементы которых были выполнены в виде нитей. Такие датчики получили название Hot Wire MAF Sensor. Выходной сигнал этих датчиков был частотный, то есть в зависимости от расхода воздуха менялось не напряжение, а частота выходных импульсов. Датчики были менее точны, не позволяли регистрировать обратный поток, но эти недостатки перекрывала очень высокая надежность.

ДМРВ – очень важный датчик в любой системе управления. На основе его сигнала производится расчет циклового наполнение цилиндра, пересчитываемого в конечном итоге в длительность импульса открытия форсунок.

В соответствии с действующей документацией, на ВАЗе разрешены к применению три модификации датчика расхода воздуха HFM 5 фирмы BOSCH. Под каталогом ВАЗ понимается каталоги запасных частей для конкретных автомобилей. К сожалению на датчиках присутствуют только последние три цифры «Бошевского» каталожного номера, а ВАЗовский № отсутствует.

Датчик поставляется только в сборе, с кодом и маркируется зеленым кругом. Сам элемент имеет измененную конструкцию. В 2006 г. для усложнения кражи или подмены элементов ДМРВ для закрепления чувствительного элемента в корпусе применяются специальные однонаправленные болты.

Источник

Как эбу связывается с датчиком

ЧАСТЬ I. ДАТЧИКИ ИНЖЕКТОРНЫХ И КАРБЮРАТОРНЫХ АВТОМОБИЛЕЙ

ДПДЗ (Датчик Положения Дроссельной Заслонки)

Неисправные датчики. Осциллограммы открытия дросселя

Открытие неисправного датчика

Осциллограммы закрытия неисправного датчика

Состояние покоя неисправного датчика

ДПКВ (Датчик Положения Коленчатого Вала)

ДПКВ в ЭСУД служит для определения положения и частоты вращения коленвала для осуществления общей синхронизации системы впрыска. Шкив коленвала имеет 58 зубцов. Точкой отсчета являются два пропущенных зубца на шкиве коленвала. На осциллограмме это место выглядит как резкий скачок напряжения вниз, а потом вверх. При исправном ДПКВ его минимальное напряжение должно быть не менее 6 В, максимальное достигает до 250 В.

Эталон Межвитковое замыкание Межвитковое замыкание
Низкий сигнал Биение шкива КВ

ДМРВ (Датчик Массового Расхода Воздуха, MAF-Sensor)


ДМРВ является датчиком термоанемометрического типа. Устанавливается между воздушным фильтром и дроссельным патрубком. Сигнал ДМРВ представляет собой напряжение постоянного тока, изменяющееся в диапазоне от 1 до 5 В, величина которого зависит от количества воздуха, проходящего через датчик.

Эталон. ОК Полуживой датчик Неисправный
датчик

ДК (Датчик Кислорода, он же Lambda Zond)

Отравленный датчик Обедненная смесь Богатая смесь Бедная смесь

ДФ (Датчик ФАЗ)

Датчик фаз устанавливается на двигателе ВАЗ- 2112 в верхней части головки блока цилиндров за шкивом впускного распредвала. На двигателях 2111 (Евро‑ 2 ) на заглушке справой стороны. В основу работы датчика заложен эффект Холла. На шкиве впускного распредвала расположен задающий диск с прорезью. Прохождение прорези через зону действия датчика фаз соответствует открытию впускного клапана первого цилиндра. Контроллер посылает на датчик фаз опорное напряжение 12 В. Напряжение на выходе датчика фаз циклически меняется от значения близкого к 0 (при прохождении прорези задающего диска впускного распредвала через датчик) до напряжения близкого напряжению АКБ (при прохождении через датчик кромки задающего диска). Таким образом при работе двигателя датчик фаз выдает на контроллер импульсный сигнал синхронизирующий впрыск топлива с открытием впускных клапанов. Сигналы у двигателя 2112 и 2111 (Евро‑ 2 ) совершенно одинаковые.

ДД (Датчик Детонации, Knock Sensor)

Широкополосный датчик детонации пьезокерамического типа устанавливается на блоке двигателя. Во время работы двигателя датчик генерирует сигнал напряжения переменного тока с частотой и амплитудой зависящей от частоты и амплитуды вибрации той части двигателя, на которой установлен датчик. При возникновении детонации амплитуда вибраций определенной частоты повышается, что приводит к увеличению амплитуды выходного сигнала ДД. Контроллер считывает этот сигнал (только в определенных положениях КВ, т.н «окно обнаружения детонациии»), фильтрует, усредняет и на основе полученных данных и корректирует угол опережения зажигания для гашения детонации.

ДТОЖ (Датчик температуры охлаждающей жидкости)

Датчик температуры в СУД служит для определения температурного состояния двигателя. По его сигналу ЭБУ при запуске выставляет необходимое количество шагов РХХ, регулирует топливоподачу. Внутри датчика находится термистором с «отрицательным температурным коэффициентом» – при нагреве его сопротивление уменьшается. Высокая температура охлаждающей жидкости вызывает низкое сопротивление ( 70 Ом + 2 % при 130 °С), а низкая температура дает высокое сопротивление ( 100700 Ом ± 2 % при ‑ 40 °С). Контроллер подает на датчик температуры охлаждающей жидкости напряжение 5 В через резистор с постоянным сопротивлением, находящимся внутри контроллера. Температуру охлаждающей жидкости контроллер рассчитывает по падению напряжения на датчике, имеющем переменное сопротивление. Падение напряжения большое на холодном двигателе, и низкое – на прогретом. Соответственно, на холодном двигателе напряжение на датчике выше, на горячем – ниже. Это хорошо видно по осциллограммам.

ДС (Датчик скорости, Speed Sensor)

Датчик скорости служит для получении информации о скорости движения автомобиля для приборной панели и СУД, в которой используется для определения режимов движения автомобиля – ХХ и ПХХ.

В основе его работы заложен эффект Холла. Сигнал, получаемый ЭБУ с датчика скорости, импульсный и зависит от скорости движения автомобил я.

Датчик Холла

Датчик Холла в распределителе зажигания служит для своевременной подачи управляющих импульсов в коммутатор. С выхода датчика снимается напряжение, если в его зазоре находится стальной экран. Если экрана в зазоре нет, то напряжение на выходе датчика близко к нулю.

Источник

Ремонт и техническое обслуживание автомобилей

Электронное управление и регулирование

Управление и регулирование посредством ЭБУ

При получении сигналов от датчиков нередко одна или несколько входных величин влияют на один или несколько выходных параметров. Все эти нюансы предусматриваются программой электронного блока, и он может выбрать наиболее оптимальную команду из предлагаемого программой перечня. Таким образом, ЭБУ автомобильных систем осуществляют функции управления и регулирования для выбора наиболее рационального выходного сигнала к исполнительным устройствам.

Управление

В ЭБУ выходные параметры для исполнительных устройств рассчитываются с использованием входных величин, заданных величин, полей характеристик и алгоритмов. Само воздействие не проверяется (открытый процесс управления). Такой метод используется, например, при программном управлении работой свечей накаливания.

Регулирование

В ЭБУ фактическое значение параметра постоянно сравнивается с его заданной (оптимальной) величиной, и обеспечивается замкнутая последовательность действий (по контуру регулирования). Как только обнаруживается различие, ЭБУ корректирует работу исполнительного механизма.
Преимуществом регулирования является возможность выявления и учета вредных воздействий (помех), например, при регулировании частоты вращения коленчатого вала на режиме минимальных оборотов холостого хода.

Обработка данных

При работе системы электронный блок управления (ЭБУ) принимает сигналы датчиков (входные сигналы), оценивает их и ограничивает допустимыми уровнями напряжения. Некоторые входные сигналы в качестве диагностики проходят проверку на достоверность.
Так, например, микропроцессор ЭБУ дизельного двигателя системы Common Rail рассчитывает момент начала, и продолжительность впрыска топлива с учетом сигналов датчиков и параметров, загруженных в него полей характеристик. Рассчитанные значения преобразуются в выходные сигналы для исполнительных устройств.

Выходными сигналами управляют оконечные каскады, имеющие достаточную мощность для привода исполнительных механизмов (например, форсунок, электромагнитных клапанов высокого давления, клапана рециркуляции отработавших газов и др.).
Дополнительно через сетевой интерфейс происходит обмен сигналами с другими системами автомобиля.
Рассмотрим подробнее, как это происходит.

Входные сигналы

Датчики и исполнительные механизмы образуют периферию ЭСАУ, а ЭБУ является центром обработки данных. От датчиков на ЭБУ по кабельной разводке и разъемам передаются электрические сигналы, которые могут быть аналоговыми, цифровыми и импульсными (см. рисунок 1).

Аналоговые входные сигналы могут иметь любое (в определенных пределах) значение напряжения. Такие электрические сигналы передают большинство датчиков, где измеряемая физическая величина изменяется и фиксируется непрерывно, например, расход воздуха, давление на впуске двигателя, напряжение аккумуляторной батареи, температура охлаждающей жидкости и воздуха и др.

Микропроцессор ЭБУ может обрабатывать только цифровые сигналы, поэтому аналоговые сигналы с датчиков преобразуются аналого-цифровым преобразователем ЭБУ в цифровые значения. Максимальное разрешение таких сигналов осуществляется ступенями по 5 мВ на бит (около 1000 ступеней).
Поскольку любой компьютер умеет «читать» лишь два слова – «да» и «нет», цифровые входные сигналы имеют только два значения: «High» – логическая единица (1) и «Low» – логический ноль ().
Входными цифровыми сигналами могут быть: сигналы выключателей (вкл/выкл), цифровые сигналы магниторезистивных датчиков, датчиков Холла. Их сигналы могут непосредственно обрабатываться микроконтроллером.

Импульсные входные сигналы обычно поступают от индуктивных датчиков частоты вращения и положения (например, коленчатого вала, газораспределительного вала). Такие сигналы обрабатываются в соответствующей части схемы ЭБУ, при этом мешающие импульсы (помехи) подавляются, и сами импульсные сигналы преобразуются в цифровые.

Подготовка и обработка входного сигнала

Подготовка сигнала в зависимости от устройства датчика может происходить частично или полностью в нем самом.
Входные сигналы ограничиваются схемой защиты до необходимого уровня напряжения. Необходимые сигналы датчиков фильтруются от наложенных помех и в случае необходимости усиливаются до уровня напряжений 0. 5 В.
После преобразования входных сигналов в цифровые коды (если это необходимо), они сравниваются с эталонными значениями и идентифицируются. Далее блок управления по программе рассчитывает выходные сигналы.

Микроконтроллер является центральным конструктивным элементом ЭБУ (рис. 1), управляет последовательностью функций. Микроконтроллер включает управляющий модуль CPU (Central Processing Unit) или микропроцессор, микрочип со встроенными входными и выходными каналами, таймер, модули ROM и RAM, серийные согласующие устройства и другие периферийные блоки.
Кварцевый тактовый генератор вырабатывает тактовые импульсы для микроконтроллера.

Память для программ и данных нужна микроконтроллеру для реализации расчетов. Программное обеспечение хранится в «памяти» – постоянном запоминающем устройстве (ПЗУ) в форме двоичных числовых значений, разделенных на наборы данных. Модуль CPU считывает эти величины, интерпретирует их как команды и выполняет эти команды по очереди.

ПЗУ включает модули памяти ROM, EPROM или Flash-EPROM. Кроме того, в ПЗУ хранятся специфические данные и параметры (отдельные значения, характеристики и поля характеристик), которые не могут изменяться в процессе эксплуатации автомобиля, но влияют на процесс управления и регулирования программы.

ПЗУ может быть интегрировано в микроконтроллер и при необходимости дополнительно расширено внешними модулями памяти EPROM или Flash-EPROM.

Модуль памяти ROM (Read Only Memory)

Основное ПЗУ выполняется в виде модуля памяти ROM и содержит информацию, предназначенную только для чтения, которая загружается при изготовлении модуля и после этого уже не может быть изменена.
Объем памяти модуля ROM, интегрированного в микроконтроллер, ограничен. Для сложных систем управления (ЭСАУ) требуются дополнительные модули памяти.

Рис. 1. Обработка сигналов в ЭБУ

Модуль памяти EPROM (Erasable Programmable Read Only Memory)

Модуль памяти EPROM это стираемое и перепрограммируемое ПЗУ, хранящее информацию, которая может стираться облучением ультрафиолетовыми лучами и с помощью устройства программирования снова записывается.
Модуль памяти EPROM обычно выполняется как отдельный конструктивный элемент. Управляющий модуль CPU обращается к модулю памяти EPROM через адресную шину и шину данных.

Модуль памяти Flash-EPROM (FEPROM)

Модуль памяти Flash-EPROM обычно сокращенно называют Flash-память. Информация в этот модуль может заноситься и стираться электрически.
ЭБУ с модулями памяти Flash-EPROM может быть перепрограммирован программатором через последовательный интерфейс на станции техобслуживания без вскрытия. Если микроконтроллер дополнительно снабжен модулями ПЗУ, то в них имеются программы для программирования Flash-памяти.
Модули памяти Flash-EPROM вместе с микроконтроллером могут быть интегрированы в микрочип.
Из-за своих преимуществ Flash-EPROM вытесняет использование упрощенных модулей EPROM.

Модуль памяти RAM (Random Access Memory)

Модуль RAM является оперативным запоминающим устройством (ОЗУ), с помощью которого производится чтение/запись всех текущих величин изменяющихся параметров (переменных), например, значений сигналов. Для многозадачного использования емкости одного модуля памяти RAM, интегрированного в микроконтроллер, недостаточно, поэтому требуется дополнительный модуль памяти RAM, который подключается к микроконтроллеру через адресную шину и шину данных.
Если питание ЭБУ отключается, то модуль памяти RAM теряет весь массив данных (это энергозависимая память).

Модуль памяти EEPROM (E2PROM)

Модуль памяти RAM теряет всю информацию, если отключается от источника питания. Данные, которые необходимо сохранить для последующего управления и диагностики системы (например, коды и параметры неисправностей), должны долговременно храниться в модулях, не зависимых от электропитания.

Модуль памяти EEPROM загружается информацией электрически, но в нем, в противоположность модулю памяти Flash-EPROM, информация может стираться и заполняться по отдельности в каждой ячейке памяти.
Модуль памяти EEPROM предназначен для многократного повторения циклов записи/стирания информации и применяется как энергонезависимое устройство чтения/записи.

Модуль ASIC (Application Specific Integrated Circuit)

Модули ASIC это адаптивные интегральные схемы, предназначенные для расширения технических возможностей ЭБУ по расчету данных, когда стандартных микроконтроллеров недостаточно.
Эти интегральные схемы проектируются и изготавливаются по заданию разработчиков ЭБУ. Они могут содержать дополнительный модуль памяти RAM, входные и выходные каналы, самостоятельно генерировать и передавать сигналы ШИМ.

Модуль контроля

Выходные сигналы исполнительным устройствам

Микроконтроллер с помощью выходных сигналов управляет выходными каскадами ЭБУ, которые генерируют сигналы достаточной мощности для непосредственного управления исполнительными устройствами, а в некоторых случаях и реле.
Каждый выходной каскад защищен от короткого замыкания и скачков напряжения, а также от разрушения вследствие электрической или тепловой перегрузки. Любой нештатный режим интегральные схемы оконечных каскадов распознают как ошибку, и передают об этом сигнал в микроконтроллер.
Коммутационные сигналы служат для включения и выключения исполнительных устройств (например, электрического вентилятора системы охлаждения двигателя).

Сигналы ШИМ

Рис. 2. Сигнал ШИМ:
T – период сигнала; t – переменная длительность сигнала

Передача данных внутри блока управления

Периферийные системы, поддерживающие работу микроконтроллера, могут обмениваться с ним сигналами через адресную шину и шину данных. Например, микроконтроллер выдает через адресную шину адрес модуля памяти RAM, по которому должно читаться содержание памяти.

В начале развития автомобильной электроники использовались 8-битные шины из восьми проводников, по которым передавались целые значения величиной до 256.
16-битные адресные шины уже могут обращаться к 65 536 адресам.

Современные электронные системы управления нуждаются в 16— или 32-битной шине данных. Для уменьшения количества электрических выводов, шину данных и адресную шину мультиплексируют, т. е. адреса и данные передают в разное время, при этом используют одни и те же проводники.
Данные, не требующие высоких скоростей передачи (например, данные памяти неисправностей), используют последовательные интерфейсы только с одной линией передачи данных.

Обмен данными между различными ЭСУ автомобиля

В процессе работы электронные системы автомобиля, управляющие различными устройствами и механизмами, взаимодействуют между собой, обмениваясь актуальными данными. Рассмотрим, как осуществляется обмен данными между электронными блоками ЭСУ автомобиля на примере взаимодействия с ЭСУД (электронной системы управления двигателем).

Микропроцессор ЭБУ дизельного двигателя системы Common Rail определяет момент начала и продолжительность впрыска топлива с учетом сигналов датчиков, и рассчитывает текущий расход топлива.
Сигнал расхода топлива передается ЭБУ двигателя 3 (рис. 3) в виде цифрового послания в шину CAN. Особенность шины CAN в том, что при передачи каким-либо ЭБУ послания в шину, оно одновременно поступает на все остальные ЭБУ автомобиля, подключенные к этой шине.
Таким образом, послание от ЭБУ двигателя прочитывается блоком управления комбинации приборов или автономным бортовым компьютером 6, которые демонстрируют водителю данные мгновенного расхода топлива и (или) запаса хода.
В старых электронных системах управления в качестве сигнала расхода топлива использовался ШИМ-сигнал (рис. 1).

Внешняя регулировка крутящего момента обеспечивается изменением подачи топлива под влиянием работы других систем автомобиля, например, антипробуксовочной системы или управления коробкой передач. Эти системы сообщают ЭБУ двигателем об изменении крутящего момента двигателя (обычно, в сторону снижения), а вместе с ним, соответственно, и величины подачи топлива.

Управление генератором 9 (рис. 3) и его диагностика может обеспечиваться через стандартный серийный интерфейс ЭБУ двигателем.
Например, при разряженной аккумуляторной батарее ЭБУ поддерживает повышенную частоту вращения коленчатого вала на режиме минимальных оборотов холостого хода.
В некоторых современных автомобилях управление генератором реализуется чрез шину LIN (Local Interconnect Network – локальная коммутируемая сеть, которая используется для управления электромеханическими компонентами автомобиля).

Управление стартером 8 (рис. 3) производится ЭБУ двигателем, который обеспечивает блокировку стартера для предотвращения его включение при работающем двигателе.
Блок управления включением свечей накаливания 5 получает от ЭБУ двигателем информацию о моменте начала и продолжительности процесса накаливания свечей, управляет этим процессом и контролирует его. Для проведения диагностики в ЭБУ двигателя сообщается о нарушениях в этом процессе.
При прогреве камер сгорания блок 5 отключает контрольную лампу предварительного прогрева на панели приборов автомобиля.

Электронное блокирование движения необходимо для предотвращения несанкционированное использование автомобиля. Двигатель может запуститься только в том случае, когда электронное противоугонное устройство 7 (рис. 3) разблокирует ЭБУ двигателем.
С помощью пульта дистанционного управления или выключателя стартера и свечей накаливания водитель посылает сигнал на противоугонное устройство, подтверждающий, что он правомочен использовать этот автомобиль.
В этом случае ЭБУ двигателем подключается к остальным системам, и становятся возможными как пуск самого двигателя, так и движение автомобиля.

Кондиционер является частью климатической установки автомобиля и необходим для обеспечения комфортных условий труда водителя при высоких температурах окружающего воздуха.
Кондиционер охлаждает воздух в салоне с помощью компрессора 10, потребляемая мощность которого может составлять до 30% мощности двигателя. При различных условиях движения автомобиля, компрессор кондиционера управляется, в т. ч. ЭБУ двигателем, который может на некоторое время его отключить при резком увеличении оборотов. Так как это отключение кратковременно, оно не произведет заметного влияния на температуру в салоне автомобиля.

Источник