Меню

Как эбу управляет генератором

forum.injectorservice.com.ua

Диагностика автомобилей с помощью USB Autoscope

АВТОЛИКБЕЗ. Ещё раз о возбуждении генератора

АВТОЛИКБЕЗ. Ещё раз о возбуждении генератора

Сообщение Саша-Ирпень » 02 фев 2014, 10:15

ВАЗ 2101:
На приведенной электросхеме можно проследить путь движения тока. (показано красными стрелками).
Ток идет по пути: «+» АКБ», болт «30» генератора, Клеммы «30/1 » и «15» замка зажигания, предохранитель 10, выводы «15» и «67» реле
регулятора, вывод «67» геенратора, обмотка возбуждения, (ротора) генератора, масса блока и «-» АКБ.

ДОСТОИНСТВА:
К достоинствам этой схемы можно отнести её простоту и понятность. Также, её удобно диагностировать, измеряя напряжения и ток в
разных точках.

НЕДОСТАТКИ:
(Вот недостатков довольно таки много).
При включенном зажигании весь ток возбуждения, (ок. 2,2 а), протекает через ротор.
Поэтому:
при холодном пуске, возникает дополнительное торможение проворачиванию двигателя, поскольку обмотка возбуждения
«забирает» дополнительный ток от АКБ, которого и так » в обрез» при зимнем пуске.
При включенном «по забывчивости» зажигании происходит разряд АКБ, которая за сутки разрядится «в ноль».
Даже после запуска мотора, ток продолжает течь через замок, (хотя внутри генератора, совсем рядом, также, имеется напряжение).
Этот ток дает дополнительную нагрузку на контактную группу замка зажигания, которой и так не очень легко.
Из-за длинной цепи возбуждения, на ней происходит заметное падение напряжения, что снижает точность регулирования напряжения
бортсети регулятором напряжения. (Хотя совсем рядом, внутри генератора имеется напряжение, которое можно было бы. ).
Частые окисления предохранителя №10 вызывают сбои в работе
генератора.
.
Часть этих недостатков была устранена на ВАЗ 2105 с генератором Г222 и регулятором напряжения Я112В.

Re: Ещё раз о возбуждении генератора.

Сообщение Саша-Ирпень » 03 фев 2014, 05:11

Часть этих недостатков была устранена на ВАЗ 2105 с генератором Г222 и регулятором напряжения Я112В.
В этом генераторе ток возбуждения разделен на силовой и управляющий. Силовой ток идет от силового болта «30»
установленного на задней крышке генератора. Для этого на регуляторе напряжения имеется специальный провод, подключаемый к
этому болту. По этому проводу и течет силовой ток. А вот, управление этим током, (т. е. его включение), производится замком
зажигания. Тогда ток течет по цепи, которая подобна протеканию тока на Г221.

Впервые столкнувшись с этим генератором я провел несколько измерений. Оказалось, что его ток управления, (шина «15», от
предохранителя №9) составляет ок. 15 ма, (0,015а) и появляется только при включенном зажигании. А вот силовой ток = 3 а и,
также, появляется только после появления питания на управляющем выводе. Управляющий ток открывает выходные транзисторы включенные
по схеме Дарлингтона и через ротор начинает протекать ток.

(Генератор Г222 уже мощнее, чем его предшественник. Поэтому и ток ротора на нем = 3 а, а ток отдачи этого генератора будет 50а. В
отличие от Г221 ток ротора которого будет 2,2 а, а ток отдачи 42 ампера).

Так вот, 29.37.01 хотя и имел регулятор напряжения Я112А, установленный на корпусе генератора, но был запитан по более
«древней» схеме, чем его ВАЗовский родственник. Обмотка возбуждения на нем питается только от замка зажигания, от шины «15».

ДОСТОИНСТВА: К достоинствам этого генератора относится подключение силового питания от силовой магистрали. Но, остальные
недостатки его «младшего брата» Г221, у него остались.

Re: Ещё раз о возбуждении генератора.

Сообщение Саша-Ирпень » 04 фев 2014, 05:22

Для понимания сути этой проблемки давайте, чуть подробнее рассмотрим сам процесс возбуждения генератора с плечом дополнительных диодов:
После включения генератора, загорается лампочка на щитке приборов, через которую протекает ток ок. 200ма. Ток течет через лампочку, провод коричневый с белым, штекер «61», «+» щетку, обмотку ротора, «-» щетку, открытые выходные транзисторы «Р.Н.» и на массу блока цилиндров. Этот ток создает вокруг ротора магнитное поле, которое при вращении генератора, суммируясь с остаточным магнитным полем ротора, создает в обмотке статора Э.Д.С. После выпрямления плечом дополнительных диодов, Э.Д.С., также, подается на ротор. Этот ток, ещё больше усиливает магнитное поле ротора и т. д. Происходит лавинообразное нарастание выходного напряжения генератора и он возбуждается, т. е. выходит на рабочий режим.
С первого взгляда, может показаться, что даже самый малый ток, поданный на «61» вывод, будет «усилен» и генератор должен возбудиться. Но, это не так. Существует некая пороговая величина тока возбуждения. Для того, чтобы понять, почему так, давайте вспомним вольт-амперную характеристику полупроводникового диода.
На графике видно, что при напряжении, примерно, до 0,6 вольта, через диод протекает очень-очень маленький ток. А уже выше 0,6 вольта, сила тока пропускаемого диодом резко увеличивается.

Читайте также:  Защита кпп и раздатки на патролах

3). Если включить 2 диода последовательно, (а ведь при выпрямлении переменного тока в генераторе он ВСЕГДА течет через ДВА диода), то возрастание тока получим, только, при напряжении выше 1,2 вольта.

ВЫВОДЫ:
При возбуждении генератора, он начнет возбуждаться только при превышении некоего порогового напряжения. При включенном зажигании, лампочка щитка приборов/обмотка ротора с «Р.Н». образуют делитель напряжения. Величину напряжения на меньшем плече можно измерить вольтметром. (На выводе «61»). Обычно, оно = 2-3 вольтам. Если эта величина ниже определенного порога, то ток возбуждения на ХХ не потечет. Если внутри генератора имеются окисленные контакты, то к минимальной величине порогового напряжения, (скажем 1,2 в на диодах + 0,5 в падение на выходном транзисторе «Р.Н».) понадобится ещё дополнительное напряжение.
(Получается, что схемотехника возбуждения Г222 многократно надежней, чем генератора с плечом доп. диодов).

ПОЖЕЛАНИЕ:
Напомню, что если на ВАЗ 2105-07 и на карбюраторных ВАЗ 2108-09 на щитке приборов был вольтметр, который позволял увидеть как перезаряд, так и пониженное напряжение в бортсети, то на инжекторных авто вольтметра мы уже не увидим. Поэтому, лампочка контроля работы генератора погаснет при равенстве напряжений силового и дополнительного плеча диодов. А вот величина этого напряжения, при неисправности генератора, может быть далека от нормы. Поэтому, если бы по лампочке увидеть ещё и величину выходного напряжения генератора.
.

Генераторы «десятого» семейства не претерпели принципиальных изменений в сравнении с «девяточными».

Источник

Ремонт и техническое обслуживание автомобилей

Электронное управление и регулирование

Управление и регулирование посредством ЭБУ

При получении сигналов от датчиков нередко одна или несколько входных величин влияют на один или несколько выходных параметров. Все эти нюансы предусматриваются программой электронного блока, и он может выбрать наиболее оптимальную команду из предлагаемого программой перечня. Таким образом, ЭБУ автомобильных систем осуществляют функции управления и регулирования для выбора наиболее рационального выходного сигнала к исполнительным устройствам.

Управление

В ЭБУ выходные параметры для исполнительных устройств рассчитываются с использованием входных величин, заданных величин, полей характеристик и алгоритмов. Само воздействие не проверяется (открытый процесс управления). Такой метод используется, например, при программном управлении работой свечей накаливания.

Регулирование

В ЭБУ фактическое значение параметра постоянно сравнивается с его заданной (оптимальной) величиной, и обеспечивается замкнутая последовательность действий (по контуру регулирования). Как только обнаруживается различие, ЭБУ корректирует работу исполнительного механизма.
Преимуществом регулирования является возможность выявления и учета вредных воздействий (помех), например, при регулировании частоты вращения коленчатого вала на режиме минимальных оборотов холостого хода.

Обработка данных

При работе системы электронный блок управления (ЭБУ) принимает сигналы датчиков (входные сигналы), оценивает их и ограничивает допустимыми уровнями напряжения. Некоторые входные сигналы в качестве диагностики проходят проверку на достоверность.
Так, например, микропроцессор ЭБУ дизельного двигателя системы Common Rail рассчитывает момент начала, и продолжительность впрыска топлива с учетом сигналов датчиков и параметров, загруженных в него полей характеристик. Рассчитанные значения преобразуются в выходные сигналы для исполнительных устройств.

Выходными сигналами управляют оконечные каскады, имеющие достаточную мощность для привода исполнительных механизмов (например, форсунок, электромагнитных клапанов высокого давления, клапана рециркуляции отработавших газов и др.).
Дополнительно через сетевой интерфейс происходит обмен сигналами с другими системами автомобиля.
Рассмотрим подробнее, как это происходит.

Входные сигналы

Датчики и исполнительные механизмы образуют периферию ЭСАУ, а ЭБУ является центром обработки данных. От датчиков на ЭБУ по кабельной разводке и разъемам передаются электрические сигналы, которые могут быть аналоговыми, цифровыми и импульсными (см. рисунок 1).

Аналоговые входные сигналы могут иметь любое (в определенных пределах) значение напряжения. Такие электрические сигналы передают большинство датчиков, где измеряемая физическая величина изменяется и фиксируется непрерывно, например, расход воздуха, давление на впуске двигателя, напряжение аккумуляторной батареи, температура охлаждающей жидкости и воздуха и др.

Микропроцессор ЭБУ может обрабатывать только цифровые сигналы, поэтому аналоговые сигналы с датчиков преобразуются аналого-цифровым преобразователем ЭБУ в цифровые значения. Максимальное разрешение таких сигналов осуществляется ступенями по 5 мВ на бит (около 1000 ступеней).
Поскольку любой компьютер умеет «читать» лишь два слова – «да» и «нет», цифровые входные сигналы имеют только два значения: «High» – логическая единица (1) и «Low» – логический ноль ().
Входными цифровыми сигналами могут быть: сигналы выключателей (вкл/выкл), цифровые сигналы магниторезистивных датчиков, датчиков Холла. Их сигналы могут непосредственно обрабатываться микроконтроллером.

Читайте также:  Гофры глушителя nissan presage

Импульсные входные сигналы обычно поступают от индуктивных датчиков частоты вращения и положения (например, коленчатого вала, газораспределительного вала). Такие сигналы обрабатываются в соответствующей части схемы ЭБУ, при этом мешающие импульсы (помехи) подавляются, и сами импульсные сигналы преобразуются в цифровые.

Подготовка и обработка входного сигнала

Подготовка сигнала в зависимости от устройства датчика может происходить частично или полностью в нем самом.
Входные сигналы ограничиваются схемой защиты до необходимого уровня напряжения. Необходимые сигналы датчиков фильтруются от наложенных помех и в случае необходимости усиливаются до уровня напряжений 0. 5 В.
После преобразования входных сигналов в цифровые коды (если это необходимо), они сравниваются с эталонными значениями и идентифицируются. Далее блок управления по программе рассчитывает выходные сигналы.

Микроконтроллер является центральным конструктивным элементом ЭБУ (рис. 1), управляет последовательностью функций. Микроконтроллер включает управляющий модуль CPU (Central Processing Unit) или микропроцессор, микрочип со встроенными входными и выходными каналами, таймер, модули ROM и RAM, серийные согласующие устройства и другие периферийные блоки.
Кварцевый тактовый генератор вырабатывает тактовые импульсы для микроконтроллера.

Память для программ и данных нужна микроконтроллеру для реализации расчетов. Программное обеспечение хранится в «памяти» – постоянном запоминающем устройстве (ПЗУ) в форме двоичных числовых значений, разделенных на наборы данных. Модуль CPU считывает эти величины, интерпретирует их как команды и выполняет эти команды по очереди.

ПЗУ включает модули памяти ROM, EPROM или Flash-EPROM. Кроме того, в ПЗУ хранятся специфические данные и параметры (отдельные значения, характеристики и поля характеристик), которые не могут изменяться в процессе эксплуатации автомобиля, но влияют на процесс управления и регулирования программы.

ПЗУ может быть интегрировано в микроконтроллер и при необходимости дополнительно расширено внешними модулями памяти EPROM или Flash-EPROM.

Модуль памяти ROM (Read Only Memory)

Основное ПЗУ выполняется в виде модуля памяти ROM и содержит информацию, предназначенную только для чтения, которая загружается при изготовлении модуля и после этого уже не может быть изменена.
Объем памяти модуля ROM, интегрированного в микроконтроллер, ограничен. Для сложных систем управления (ЭСАУ) требуются дополнительные модули памяти.

Рис. 1. Обработка сигналов в ЭБУ

Модуль памяти EPROM (Erasable Programmable Read Only Memory)

Модуль памяти EPROM это стираемое и перепрограммируемое ПЗУ, хранящее информацию, которая может стираться облучением ультрафиолетовыми лучами и с помощью устройства программирования снова записывается.
Модуль памяти EPROM обычно выполняется как отдельный конструктивный элемент. Управляющий модуль CPU обращается к модулю памяти EPROM через адресную шину и шину данных.

Модуль памяти Flash-EPROM (FEPROM)

Модуль памяти Flash-EPROM обычно сокращенно называют Flash-память. Информация в этот модуль может заноситься и стираться электрически.
ЭБУ с модулями памяти Flash-EPROM может быть перепрограммирован программатором через последовательный интерфейс на станции техобслуживания без вскрытия. Если микроконтроллер дополнительно снабжен модулями ПЗУ, то в них имеются программы для программирования Flash-памяти.
Модули памяти Flash-EPROM вместе с микроконтроллером могут быть интегрированы в микрочип.
Из-за своих преимуществ Flash-EPROM вытесняет использование упрощенных модулей EPROM.

Модуль памяти RAM (Random Access Memory)

Модуль RAM является оперативным запоминающим устройством (ОЗУ), с помощью которого производится чтение/запись всех текущих величин изменяющихся параметров (переменных), например, значений сигналов. Для многозадачного использования емкости одного модуля памяти RAM, интегрированного в микроконтроллер, недостаточно, поэтому требуется дополнительный модуль памяти RAM, который подключается к микроконтроллеру через адресную шину и шину данных.
Если питание ЭБУ отключается, то модуль памяти RAM теряет весь массив данных (это энергозависимая память).

Модуль памяти EEPROM (E2PROM)

Модуль памяти RAM теряет всю информацию, если отключается от источника питания. Данные, которые необходимо сохранить для последующего управления и диагностики системы (например, коды и параметры неисправностей), должны долговременно храниться в модулях, не зависимых от электропитания.

Модуль памяти EEPROM загружается информацией электрически, но в нем, в противоположность модулю памяти Flash-EPROM, информация может стираться и заполняться по отдельности в каждой ячейке памяти.
Модуль памяти EEPROM предназначен для многократного повторения циклов записи/стирания информации и применяется как энергонезависимое устройство чтения/записи.

Модуль ASIC (Application Specific Integrated Circuit)

Модули ASIC это адаптивные интегральные схемы, предназначенные для расширения технических возможностей ЭБУ по расчету данных, когда стандартных микроконтроллеров недостаточно.
Эти интегральные схемы проектируются и изготавливаются по заданию разработчиков ЭБУ. Они могут содержать дополнительный модуль памяти RAM, входные и выходные каналы, самостоятельно генерировать и передавать сигналы ШИМ.

Модуль контроля

Выходные сигналы исполнительным устройствам

Микроконтроллер с помощью выходных сигналов управляет выходными каскадами ЭБУ, которые генерируют сигналы достаточной мощности для непосредственного управления исполнительными устройствами, а в некоторых случаях и реле.
Каждый выходной каскад защищен от короткого замыкания и скачков напряжения, а также от разрушения вследствие электрической или тепловой перегрузки. Любой нештатный режим интегральные схемы оконечных каскадов распознают как ошибку, и передают об этом сигнал в микроконтроллер.
Коммутационные сигналы служат для включения и выключения исполнительных устройств (например, электрического вентилятора системы охлаждения двигателя).

Читайте также:  Контакты стартера ауди 100

Сигналы ШИМ

Рис. 2. Сигнал ШИМ:
T – период сигнала; t – переменная длительность сигнала

Передача данных внутри блока управления

Периферийные системы, поддерживающие работу микроконтроллера, могут обмениваться с ним сигналами через адресную шину и шину данных. Например, микроконтроллер выдает через адресную шину адрес модуля памяти RAM, по которому должно читаться содержание памяти.

В начале развития автомобильной электроники использовались 8-битные шины из восьми проводников, по которым передавались целые значения величиной до 256.
16-битные адресные шины уже могут обращаться к 65 536 адресам.

Современные электронные системы управления нуждаются в 16— или 32-битной шине данных. Для уменьшения количества электрических выводов, шину данных и адресную шину мультиплексируют, т. е. адреса и данные передают в разное время, при этом используют одни и те же проводники.
Данные, не требующие высоких скоростей передачи (например, данные памяти неисправностей), используют последовательные интерфейсы только с одной линией передачи данных.

Обмен данными между различными ЭСУ автомобиля

В процессе работы электронные системы автомобиля, управляющие различными устройствами и механизмами, взаимодействуют между собой, обмениваясь актуальными данными. Рассмотрим, как осуществляется обмен данными между электронными блоками ЭСУ автомобиля на примере взаимодействия с ЭСУД (электронной системы управления двигателем).

Микропроцессор ЭБУ дизельного двигателя системы Common Rail определяет момент начала и продолжительность впрыска топлива с учетом сигналов датчиков, и рассчитывает текущий расход топлива.
Сигнал расхода топлива передается ЭБУ двигателя 3 (рис. 3) в виде цифрового послания в шину CAN. Особенность шины CAN в том, что при передачи каким-либо ЭБУ послания в шину, оно одновременно поступает на все остальные ЭБУ автомобиля, подключенные к этой шине.
Таким образом, послание от ЭБУ двигателя прочитывается блоком управления комбинации приборов или автономным бортовым компьютером 6, которые демонстрируют водителю данные мгновенного расхода топлива и (или) запаса хода.
В старых электронных системах управления в качестве сигнала расхода топлива использовался ШИМ-сигнал (рис. 1).

Внешняя регулировка крутящего момента обеспечивается изменением подачи топлива под влиянием работы других систем автомобиля, например, антипробуксовочной системы или управления коробкой передач. Эти системы сообщают ЭБУ двигателем об изменении крутящего момента двигателя (обычно, в сторону снижения), а вместе с ним, соответственно, и величины подачи топлива.

Управление генератором 9 (рис. 3) и его диагностика может обеспечиваться через стандартный серийный интерфейс ЭБУ двигателем.
Например, при разряженной аккумуляторной батарее ЭБУ поддерживает повышенную частоту вращения коленчатого вала на режиме минимальных оборотов холостого хода.
В некоторых современных автомобилях управление генератором реализуется чрез шину LIN (Local Interconnect Network – локальная коммутируемая сеть, которая используется для управления электромеханическими компонентами автомобиля).

Управление стартером 8 (рис. 3) производится ЭБУ двигателем, который обеспечивает блокировку стартера для предотвращения его включение при работающем двигателе.
Блок управления включением свечей накаливания 5 получает от ЭБУ двигателем информацию о моменте начала и продолжительности процесса накаливания свечей, управляет этим процессом и контролирует его. Для проведения диагностики в ЭБУ двигателя сообщается о нарушениях в этом процессе.
При прогреве камер сгорания блок 5 отключает контрольную лампу предварительного прогрева на панели приборов автомобиля.

Электронное блокирование движения необходимо для предотвращения несанкционированное использование автомобиля. Двигатель может запуститься только в том случае, когда электронное противоугонное устройство 7 (рис. 3) разблокирует ЭБУ двигателем.
С помощью пульта дистанционного управления или выключателя стартера и свечей накаливания водитель посылает сигнал на противоугонное устройство, подтверждающий, что он правомочен использовать этот автомобиль.
В этом случае ЭБУ двигателем подключается к остальным системам, и становятся возможными как пуск самого двигателя, так и движение автомобиля.

Кондиционер является частью климатической установки автомобиля и необходим для обеспечения комфортных условий труда водителя при высоких температурах окружающего воздуха.
Кондиционер охлаждает воздух в салоне с помощью компрессора 10, потребляемая мощность которого может составлять до 30% мощности двигателя. При различных условиях движения автомобиля, компрессор кондиционера управляется, в т. ч. ЭБУ двигателем, который может на некоторое время его отключить при резком увеличении оборотов. Так как это отключение кратковременно, оно не произведет заметного влияния на температуру в салоне автомобиля.

Источник