Построить доверительный интервал для равномерного распределения
Неравенство « » обычно соответствует дискретным распределениям, когда нельзя обязаться добиться равенства: например, для при любом равенство невозможно, а неравенство имеет смысл:
Прежде чем рассматривать какие-то регулярные способы построения точных и асимптотических ДИ (доверительных интервалов), разберем два примера, предлагающих очень похожие способы. Далее мы попробуем извлечь из этих примеров некоторую общую философию построения точных и асимптотически точных доверительных интервалов. Начнем с нормального распределения как с наиболее важного и часто встречающегося.
Вспомним, что нормальное распределение устойчиво по суммированию: доказать бы!
Поэтому
случайная величина Итак, величина имеет стандартное нормальное распределение.
Соотношение между пределом ошибки выборки (Δ), гарантируемым с некоторой вероятностью Р(t), и средней ошибкой выборки имеет вид: Формулы расчета численности выборки при собственно-случайном способе отбора
Найти численность выборки можно, использовав калькулятор. Метод доверительных интерваловРешение ищем по формуле определения численности выборки для повторного отбора. 1. Используя результаты расчетов, выполненных в задании № 2 и полагая, что эти данные получены при помощи собственно-случайного 10-ти процентного бесповторного отбора, определить: Задание. Поточная линия по производству однотипных деталей подвергалась реконструкции Заданы две выборки отображающие процент брака в партиях деталей выпускаемых на данной линии до и после реконструкции Можно ли достоверно утверждать, что после реконструкции процент брака в партиях деталей снизился? 2. Вводим исходные данные. В поле Количество групп выбираем пункт «не делать группировку». Поле «Доверительный интервал генерального среднего, дисперсия и среднеквадратическое отклонения » указываем значение γ = 0.95 (что соответствует α=0.05). В поле « Выборка » указываем значение 10 (поскольку из 49 значений выбрали 5, что соответствует 10,2% (5/49×100%)). Решение. Задание №5: На заводе электроламп из партии продукции в количестве 16000 шт. ламп взято на выборку 1600 шт. (случайный, бесповторный отбор), из которых 40 шт. оказались бракованными. Определить с вероятностью 0.997 пределы, в которых будет находиться процент брака для всей партии продукции. Источник Доверительные интервалыОбщий обзор Взяв выборку из популяции, мы получим точечную оценку интересующего нас параметра и вычислим стандартную ошибку для того, чтобы указать точность оценки. Однако, для большинства случаев стандартная ошибка как такова не приемлема. Гораздо полезнее объединить эту меру точности с интервальной оценкой для параметра популяции. Это можно сделать, используя знания о теоретическом распределении вероятности выборочной статистики (параметра) для того, чтобы вычислить доверительный интервал (CI – Confidence Interval, ДИ – Доверительный интервал) для параметра. Вообще, доверительный интервал расширяет оценки в обе стороны некоторой величиной, кратной стандартной ошибке (данного параметра); два значения (доверительные границы), определяющие интервал, обычно отделяют запятой и заключают в скобки. Доверительный интервал для среднегоИспользование нормального распределенияВыборочное среднее В частности, 95% распределения выборочных средних находится в пределах 1,96 стандартных отклонений (SD) среднего популяции. Когда у нас есть только одна выборка, мы называем это стандартной ошибкой среднего (SEM) и вычисляем 95% доверительного интервала для среднего следующим образом: Если повторить этот эксперимент несколько раз, то интервал будет содержать истинное среднее популяции в 95% случаев. Обычно это доверительный интервал как, например, интервал значений, в пределах которого с доверительной вероятностью 95% находится истинное среднее популяции (генеральное среднее). Хотя это не вполне строго (среднее в популяции есть фиксированное значение и поэтому не может иметь вероятность, отнесённую к нему) таким образом интерпретировать доверительный интервал, но концептуально это удобнее для понимания. Использование t-распределенияМожно использовать нормальное распределение, если знать значение дисперсии в популяции. Кроме того, когда объем выборки небольшой, выборочное среднее отвечает нормальному распределению, если данные, лежащие в основе популяции, распределены нормально. Если данные, лежащие в основе популяции, распределены ненормально и/или неизвестна генеральная дисперсия (дисперсия в популяции), выборочное среднее подчиняется t-распределению Стьюдента. Вычисляем 95% доверительный интервал для генерального среднего в популяции следующим образом: где Вообще, она обеспечивает более широкий интервал, чем при использовании нормального распределения, поскольку учитывает дополнительную неопределенность, которую вводят, оценивая стандартное отклонение популяции и/или из-за небольшого объёма выборки. Когда объём выборки большой (порядка 100 и более), разница между двумя распределениями (t-Стьюдента и нормальным) незначительна. Тем не менее всегда используют t-распределение при вычислении доверительных интервалов, даже если объем выборки большой. Обычно указывают 95% ДИ. Можно вычислить другие доверительные интервалы, например 99% ДИ для среднего. Вместо произведения стандартной ошибки и табличного значения t-распределения, которое соответствует двусторонней вероятности 0,05, умножают её (стандартную ошибку) на значение, которое соответствует двусторонней вероятности 0,01. Это более широкий доверительный интервал, чем в случае 95%, поскольку он отражает увеличенное доверие к тому, что интервал действительно включает среднее популяции. Доверительный интервал для пропорцииВыборочное распределение пропорций имеет биномиальное распределение. Однако если объём выборки n разумно большой, тогда выборочное распределение пропорции приблизительно нормально со средним Оцениваем 95% доверительный интервал для пропорции оценивается: Если объём выборки небольшой (обычно когда np или n(1-p) меньше 5), тогда необходимо использовать биномиальное распределение для того, чтобы вычислить точные доверительные интервалы. Заметьте, что если p выражается в процентах, то (1-p) заменяют на (100-p). Интерпретация доверительных интерваловПри интерпретации доверительного интервала нас интересуют следующие вопросы: Насколько широк доверительный интервал? Широкий доверительный интервал указывает на то, что оценка неточна; узкий указывает на точную оценку. Ширина доверительного интервала зависит от размера стандартной ошибки, которая, в свою очередь, зависит от объёма выборки и при рассмотрении числовой переменной от изменчивости данных дают более широкие доверительные интервалы, чем исследования многочисленного набора данных немногих переменных. Включает ли ДИ какие-либо значения, представляющие особенный интерес? Можно проверить, ложится ли вероятное значение для параметра популяции в пределы доверительного интервала. Если да, то результаты согласуются с этим вероятным значением. Если нет, тогда маловероятно (для 95% доверительного интервала шанс почти 5%), что параметр имеет это значение. Источник detector |