Меню

Построить доверительный интервал для равномерного распределения

Построить доверительный интервал для равномерного распределения

Неравенство « » обычно соответствует дискретным распределениям, когда нельзя обязаться добиться равенства: например, для при любом равенство невозможно, а неравенство имеет смысл:

Прежде чем рассматривать какие-то регулярные способы построения точных и асимптотических ДИ (доверительных интервалов), разберем два примера, предлагающих очень похожие способы. Далее мы попробуем извлечь из этих примеров некоторую общую философию построения точных и асимптотически точных доверительных интервалов. Начнем с нормального распределения как с наиболее важного и часто встречающегося.

Вспомним, что нормальное распределение устойчиво по суммированию: доказать бы!

Поэтому

случайная величина

Итак, величина имеет стандартное нормальное распределение.

Рис. 7: Плотность стандартного нормального распределения и квантили.

Итак, искомый точный доверительный интервал уровня доверия имеет вид

2. Какой из двух ДИ одного уровня доверия и разной длины следует предпочесть?

где случайная величина имеет стандартное нормальное распределение. По определению слабой сходимости, при

Итак, искомый асимптотический ДИ уровня доверия имеет вид

Сформулируем общий принцип построения точных ДИ:

3. Разрешив неравенство относительно (если это возможно), получим точный ДИ.

Совершенно аналогично выглядит общий принцип построения асимптотических ДИ:

распределена так же, как максимум из независимых равномерно распределенных на случайных величин, то есть имеет не зависящую от параметра функцию распределения

Для любых положительных и

Длина доверительного интервала равна и уменьшается с ростом и и с их сближением.

Подставим найденные квантили в (14):

где имеет стандартное нормальное распределение. По определению слабой сходимости, при

Итак, искомый асимптотический ДИ уровня доверия имеет вид

где имеет стандартное нормальное распределение.

Источник

Доверительный интервал

Классификация доверительных интервалов

Расчет средней ошибки выборки при случайном отборе

Расхождение между значениями показателей, полученных по выборке, и соответствующими параметрами генеральной совокупности называется ошибкой репрезентативности.
Обозначения основных параметров генеральной и выборочной совокупности.

Характеристики Генеральная совокупность Выборочная совокупность
Объем совокупности (численность единиц) N n
Численность единиц, обладающих обследуемым качеством (признаком) M m
Доля единиц, обладающих обследуемым качеством (признаком), выборочная доля
Формулы средней ошибки выборки
повторный отбор бесповторный отбор
для средней для доли для средней для доли

Соотношение между пределом ошибки выборки (Δ), гарантируемым с некоторой вероятностью Р(t), и средней ошибкой выборки имеет вид: или Δ = t·μ, где t– коэффициент доверия, определяемый в зависимости от уровня вероятности Р(t) по таблице интегральной функции Лапласа.

Формулы расчета численности выборки при собственно-случайном способе отбора

Способ отбора Формулы определения численности выборки
для средней для доли
Повторный
Бесповторный

Найти численность выборки можно, использовав калькулятор.

Метод доверительных интервалов

Решение ищем по формуле определения численности выборки для повторного отбора.
Ф(tkp) = γ/2 = 0.997/2 = 0,4985 и этому значению по таблице Лапласа соответствует tkp =2.96.
w = 9% = 0,09
Δ = 4% = 0,04
Итого: n = 2.96 2 *0,09(1-0,09)/0,04 2 = 448,4844 ≈ 449

1. Используя результаты расчетов, выполненных в задании № 2 и полагая, что эти данные получены при помощи собственно-случайного 10-ти процентного бесповторного отбора, определить:
а) пределы, за которые с доверительной вероятностью 0,954 не выйдет среднее значение признака, рассчитанное по генеральной совокупности;
б) как нужно изменить объем выборки, чтобы снизить предельную ошибку средней величины на 50%.
2. Используя результаты расчетов, выполненных в задании № 2 и полагая, что эти данные получены при помощи повторного отбора, определить:
а) пределы, за которые в генеральной совокупности не выйдет значение доли предприятий, у которых индивидуальные значения признака превышают моду с доверительной вероятностью 0,954;
б) как изменить объем выборки, чтобы снизить предельную ошибку доли на 20 %.
Методические указания

Задание. Поточная линия по производству однотипных деталей подвергалась реконструкции Заданы две выборки отображающие процент брака в партиях деталей выпускаемых на данной линии до и после реконструкции Можно ли достоверно утверждать, что после реконструкции процент брака в партиях деталей снизился?

2. Вводим исходные данные.

В поле Количество групп выбираем пункт «не делать группировку».

Поле «Доверительный интервал генерального среднего, дисперсия и среднеквадратическое отклонения » указываем значение γ = 0.95 (что соответствует α=0.05).

В поле « Выборка » указываем значение 10 (поскольку из 49 значений выбрали 5, что соответствует 10,2% (5/49×100%)).

Решение.
Используя результаты расчетов, выполненных в задании № 2 и полагая, что эти данные получены при помощи повторного отбора, определить:
а) пределы, за которые в генеральной совокупности не выйдет значение доли предприятий, у которых индивидуальные значения признака превышают моду с доверительной вероятностью 0.954 ;
б) как изменить объем выборки, чтобы снизить предельную ошибку доли на 20%.

Задание №5: На заводе электроламп из партии продукции в количестве 16000 шт. ламп взято на выборку 1600 шт. (случайный, бесповторный отбор), из которых 40 шт. оказались бракованными. Определить с вероятностью 0.997 пределы, в которых будет находиться процент брака для всей партии продукции.

Источник

Доверительные интервалы

Общий обзор

Взяв выборку из популяции, мы получим точечную оценку интересующего нас параметра и вычислим стандартную ошибку для того, чтобы указать точность оценки.

Однако, для большинства случаев стандартная ошибка как такова не приемлема. Гораздо полезнее объединить эту меру точности с интервальной оценкой для параметра популяции.

Это можно сделать, используя знания о теоретическом распределении вероятности выборочной статистики (параметра) для того, чтобы вычислить доверительный интервал (CI – Confidence Interval, ДИ – Доверительный интервал) для параметра.

Вообще, доверительный интервал расширяет оценки в обе стороны некоторой величиной, кратной стандартной ошибке (данного параметра); два значения (доверительные границы), определяющие интервал, обычно отделяют запятой и заключают в скобки.

Доверительный интервал для среднего

Использование нормального распределения

Выборочное среднее имеет нормальное распределение, если объем выборки большой, поэтому можно применить знания о нормальном распределении при рассмотрении выборочного среднего.

В частности, 95% распределения выборочных средних находится в пределах 1,96 стандартных отклонений (SD) среднего популяции.

Когда у нас есть только одна выборка, мы называем это стандартной ошибкой среднего (SEM) и вычисляем 95% доверительного интервала для среднего следующим образом:

Если повторить этот эксперимент несколько раз, то интервал будет содержать истинное среднее популяции в 95% случаев.

Обычно это доверительный интервал как, например, интервал значений, в пределах которого с доверительной вероятностью 95% находится истинное среднее популяции (генеральное среднее).

Хотя это не вполне строго (среднее в популяции есть фиксированное значение и поэтому не может иметь вероятность, отнесённую к нему) таким образом интерпретировать доверительный интервал, но концептуально это удобнее для понимания.

Использование t-распределения

Можно использовать нормальное распределение, если знать значение дисперсии в популяции. Кроме того, когда объем выборки небольшой, выборочное среднее отвечает нормальному распределению, если данные, лежащие в основе популяции, распределены нормально.

Если данные, лежащие в основе популяции, распределены ненормально и/или неизвестна генеральная дисперсия (дисперсия в популяции), выборочное среднее подчиняется t-распределению Стьюдента.

Вычисляем 95% доверительный интервал для генерального среднего в популяции следующим образом:

где — процентная точка (процентиль) t-распределения Стьюдента с (n-1) степенями свободы, которая даёт двухстороннюю вероятность 0,05.

Вообще, она обеспечивает более широкий интервал, чем при использовании нормального распределения, поскольку учитывает дополнительную неопределенность, которую вводят, оценивая стандартное отклонение популяции и/или из-за небольшого объёма выборки.

Когда объём выборки большой (порядка 100 и более), разница между двумя распределениями (t-Стьюдента и нормальным) незначительна. Тем не менее всегда используют t-распределение при вычислении доверительных интервалов, даже если объем выборки большой.

Обычно указывают 95% ДИ. Можно вычислить другие доверительные интервалы, например 99% ДИ для среднего.

Вместо произведения стандартной ошибки и табличного значения t-распределения, которое соответствует двусторонней вероятности 0,05, умножают её (стандартную ошибку) на значение, которое соответствует двусторонней вероятности 0,01. Это более широкий доверительный интервал, чем в случае 95%, поскольку он отражает увеличенное доверие к тому, что интервал действительно включает среднее популяции.

Доверительный интервал для пропорции

Выборочное распределение пропорций имеет биномиальное распределение. Однако если объём выборки n разумно большой, тогда выборочное распределение пропорции приблизительно нормально со средним .

Оцениваем выборочным отношением p=r/n (где r– количество индивидуумов в выборке с интересующими нас характерными особенностями), и стандартная ошибка оценивается:

95% доверительный интервал для пропорции оценивается:

Если объём выборки небольшой (обычно когда np или n(1-p) меньше 5), тогда необходимо использовать биномиальное распределение для того, чтобы вычислить точные доверительные интервалы.

Заметьте, что если p выражается в процентах, то (1-p) заменяют на (100-p).

Интерпретация доверительных интервалов

При интерпретации доверительного интервала нас интересуют следующие вопросы:

Насколько широк доверительный интервал?

Широкий доверительный интервал указывает на то, что оценка неточна; узкий указывает на точную оценку.

Ширина доверительного интервала зависит от размера стандартной ошибки, которая, в свою очередь, зависит от объёма выборки и при рассмотрении числовой переменной от изменчивости данных дают более широкие доверительные интервалы, чем исследования многочисленного набора данных немногих переменных.

Включает ли ДИ какие-либо значения, представляющие особенный интерес?

Можно проверить, ложится ли вероятное значение для параметра популяции в пределы доверительного интервала. Если да, то результаты согласуются с этим вероятным значением. Если нет, тогда маловероятно (для 95% доверительного интервала шанс почти 5%), что параметр имеет это значение.

Источник

Читайте также:  Как построить овощную яму в огороде своими руками
Adblock
detector