Меню

Построить горизонтальную фронтальную и профильную проекции точек по их координатам

Построение проекций точки по координатам

При построении ортогональных проекций точки следует руководствоваться инвариантным свойством ортогонального проецирования 1): проекция точки – это всегда точка.

Простейшим способом определения местоположения точки в трехмерном, пространстве при использовании в качестве системы отсчета декартовой системы координат является вычисление трех ее координат.

Рассмотрим пример. Пусть требуется построить чертеж точки А, расположение которой определяется ее координатами: xА = 70, yА = 30, zА = 45. На чертеже координаты точки обычно задаются в тех единицах измерения, которые выбраны для создания всего изображения. Чаще всего это миллиметры (мм).

Более сокращенная запись выглядит следующим образом: А (70; 20; 45).

Построим точку А на двухкартинном комплексном чертеже (Рис. 9 а). Точка определена на комплексном чертеже тогда и только тогда, когда заданы две ее проекции ‑ горизонтальная и фронтальная. Следовательно, необходимо построить горизонтальную проекцию А1 и фронтальную проекцию А2.

а б
Рисунок 9

Горизонтальная плоскость проекций П1 определяется осями x1 и y1, а фронтальная П2x2 и z2. Следовательно, А1 определяется координатами xА = 70 и yА = 30, а А2 ‑ координатами xА = 70 и zА = 45. Заданные координаты откладываются на соответствующих заранее проградуированных в заданном масштабе осях проекций комплексного чертежа. Искомая проекция точки находится в пересечении прямых, проведенных параллельно осям проекций.

Если требуется построить трехкартинный комплексный чертеж, то, продолжая тот же метод для построения проекции А3, нужно отложить координаты yА = 30 и zА = 45 на осях у3 и z32, определяющих профильную плоскость проекций П3.

Однако можно использовать графический метод и без откладывания координат (Рис. 9 б). Для этого необходимо провести горизонтальную линию связи от точки А2 и ломаную линию связи от точки А1, причем ломаться линия должна на постоянной прямой комплексного чертежак13. В месте пересечения линий связи будет А3.

Дата добавления: 2015-07-13 ; Просмотров: 7539 ; Нарушение авторских прав?

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Построение ортогональных проекций точек

Положение точки в пространстве может быть задано двумя её ортогональными проекциями, например, горизонтальной и фронтальной, фронтальной и профильной. Сочетание любых двух ортогональных проекций позволяет узнать значение всех координат точки, построить третью проекцию, определить октант, в котором она находится. Рассмотрим несколько типичных задач из курса начертательной геометрии.

По заданному комплексному чертежу точек A и B необходимо:

Определение координат точек по их проекциям

Определим сначала координаты т. A, которые можно записать в виде A (x, y, z). Горизонтальная проекция т. A – точка A’, имеющая координаты x, y. Проведем из т. A’ перпендикуляры к осям x, y и найдем соответственно Aх, Aу. Координата х для т. A равна длине отрезка AхO со знаком плюс, так как Aх лежит в области положительных значений оси х. С учетом масштаба чертежа находим х = 10. Координата у равна длине отрезка AуO со знаком минус, так как т. Aу лежит в области отрицательных значений оси у. С учетом масштаба чертежа у = –30. Фронтальная проекция т. A – т. A» имеет координаты х и z. Опустим перпендикуляр из A» на ось z и найдем Az. Координата z точки A равна длине отрезка AzO со знаком минус, так как Az лежит в области отрицательных значений оси z. С учетом масштаба чертежа z = –10. Таким образом, координаты т. A (10, –30, –10).

Читайте также:  Начертите параллелограмм mnpk постройте фигуру симметричную

Построение проекций точек

Точки A и B в плоскости П3 имеют следующие координаты: A»’ (y, z); B»’ (y, z). При этом A» и A»’ лежат одном перпендикуляре к оси z, так как координата z у них общая. Точно также на общем перпендикуляре к оси z лежат B» и B»’. Чтобы найти профильную проекцию т. A, отложим по оси у значение соответствующей координаты, найденное ранее. На рисунке это сделано с помощью дуги окружности радиуса AуO. После этого проведем перпендикуляр из Aу до пересечения с перпендикуляром, восстановленным из точки A» к оси z. Точка пересечения этих двух перпендикуляров определяет положение A»’.

Точка B»’ лежит на оси z, так как ордината y этой точки равна нулю. Для нахождения профильной проекции т. B в данной задаче необходимо лишь провести перпендикуляр из B» к оси z. Точка пересечении этого перпендикуляра с осью z есть B»’.

Определение положения точек в пространстве

Наглядно представляя себе пространственный макет, составленный из плоскостей проекций П1, П2 и П3, расположение октантов, а также порядок трансформации макета в эпюр, можно непосредственно определить, что т. A расположена в III октанте, а т. B лежит в плоскости П2.

Октанты Знаки координат
x y z
1 + + +
2 + +
3 +
4 + +
5 + +
6 +
7
8 +

Построение наглядного изображения точек в системе плоскостей П1, П2, П3

Используя фронтальную изометрическую проекцию, мы построили пространственный макет III октанта. Он представляет собой прямоугольный трехгранник, у которого гранями являются плоскости П1, П2, П3, а угол (-y0x) равен 45 º. В этой системе отрезки по осям x, y, z будут откладываться в натуральную величину без искажений.

Источник

Построение точки по координатам

Плоскости проекций V, H, W принимаются за координатные плоскости, а оси проекций X, Y, Z за координатные оси как положительные, так и отрицательные (рис. 10).

Положение точки в пространстве задается тремя координатами – X, Y, Z. Проекции точки задаются двумя координатами: а(х, y), а′(х, z), а′′(y, z).

Зная направление для положительного и отрицательного значений координатных осей, принимая во внимание свойства проекций точки, можно построить проекции точки по координатам. Рассмотрим несколько задач на эту тему.

Задача. Построить проекции точки А(–10; 40; –30) (рис. 10).

Рис. 10. Построение проекций точки А по координатам

Для построения фронтальной проекции а′ точки А справа от точки О на оси Х откладываем значение Х = –10. Вниз от точки О по направлению оси Z откладываем значение Z = –30. Пересечением перпендикуляров из точек аX и аZ,восстановленных к соответствующим осям Х и Z, определяем точку а′.

Для построения горизонтальной проекции а точки А по направлению оси Y вниз от точки О откладываем значение y = – 40. Через точку аY проводим перпендикуляр до пересечения с линией связи а′аX. Отмечаем точку а – горизонтальную проекцию точки А. По расположению фронтальной и горизонтальной проекций точки А определяем, что точка А расположена в VΙΙΙ октанте.

Для построения профильной проекции а′′ точки А через ее фронтальную проекцию а′ проводим линию связи а′аZ и на ней, вправо от точки аZ, откладываем значение y = 40. Отмечаем точку а′′ – профильную проекцию точки А.

Читайте также:  Кто построил крепость орешек

Задача. Построить проекции точек по координатам и указать октант, в котором находится каждая из них.

Исходные данные: А(10; –30; 40), В(70; 50; –10), С(20; 15; 0), D(60; 35; 40), Е(50; –10; –25).

Решение. Порядок выполнения графической части задачи (рис. 11):

1. Проводим оси координат Х, Y, Z. Указываем положительные и отрицательные их направления.

2. Построение точек выполняем в масштабе 1:1.

Точка А (10; –30; 40):

Фронтальную проекцию а′ точки А определяем по координатам Х, Z; по оси Х откладываем 10 мм, по оси Z – 40 мм.

Горизонтальную проекцию а точки А определяем по координатам Х,(–Y), расстояние 30 мм откладываем по оси (–Y), совпадающей с положительным направлением оси Z.

Профильную проекцию а′′ точки А определяем по координатам (–Y), Z. В этом случае расстояние 30 мм откладывается по оси (–Y), совпадающей с положительным направлением оси Х. Следовательно, точка А находится во ΙΙ октанте.

Точка В (70; 50; –10):

Строим фронтальную проекцию b′ (Х = 70; Y = –10) точки А. Расстояние 10 мм нужно отложить на отрицательном направлении оси Z. Уточните: фронтальная b′ и горизонтальная b проекции точки В будут расположены на линии связи ниже оси Х. Профильная проекция b′′ точки В располагается справа от оси Z и ниже оси Х. Анализируя знаки координат (+ + – ) и расположение проекций точки, делаем вывод – точка В находится в ΙV октанте.

Точка С (20; 15; 0):

При построении этой точки очевидно, что фронтальная проекция с′ точки С лежит на оси Х, а ее профильная проекция а′′ лежит на оси Y, совпадающей с отрицательным направлением оси Х. Удаление точки С от плоскости проекций Н равно нулю (y = 0), следовательно, точка С лежит в плоскости Н, на границе Ι и ΙV октантов.

Точка D (60; 35; 40):

Все значения координат положительные, следовательно, точка D находится в Ι октанте.

При отрицательных значениях Y и Z точка располагается в ΙΙΙ октанте. Проекции такой точки располагаются:

— фронтальная проекция е′ точки Е располагается ниже оси Х, слева от оси Y;

— горизонтальная проекция е точки Е располагается выше оси Х, слева от оси Z;

— профильная проекция е′′ точки Е располагается слева от оси Z, ниже оси Х.

Вывод. Положение точки в пространстве вполне определено, если известны три ее координаты или две любые ортогональные проекции. Как следствие из этого – по двум любым заданным ортогональным проекциям точки можно всегда построить недостающую ее третью ортогональную проекцию.

Рис. 11. Построение точек по координатам с указанием октантов

Рассмотри построение точки по двум заданным ортогональным проекциям.

Задача. По двум заданным ортогональным проекциям построить недостающую проекцию точки В (рис. 12).

Рис. 12. Графическое условие задачи

Решение. Анализируем графическое условие задачи: заданы фронтальная и профильная проекции точки В. Это значит, заданы все три координаты точки В. Следовательно, необходимо построить ее горизонтальную проекцию.

Порядок выполнения графической части задачи:

1. Для построения горизонтальной проекции точки В необходимо знать ХВ и УВ. Эти координаты находим на чертеже.

Читайте также:  Как построить дом в архейдж без премиум аккаунта

2. Замеряем УВ = bZ b′′ и откладываем эту координату вдоль линии связи от оси ОХ от точки bХ.

3. Строим горизонтальную проекцию точки В (рис. 13).

Рис. 13. Построение недостающей проекции точки В

ПРЯМАЯ ЛИНИЯ

При ортогональном проецировании на плоскости проекций прямая линия проецируется в виде прямой. Чтобы построить проекции этой прямой линии, проходящей через заданные точки А и В, нужно построить проекции этих точек и провести прямые линии через их одноименные проекции (рис. 14). Получим:

аb – горизонтальную проекцию отрезка прямой;

а′b′ – фронтальную проекцию отрезка прямой.

Рис. 14. Проекции отрезка прямой, проходящего через две точки

Следы прямой

Прямая пересекает плоскости проекций в точках, которые называются следами прямой.

Точка пересечения прямой N с горизонтальной плоскостью проекций Н1) называется горизонтальным следом NH.

Точка пересечения прямой с фронтальной плоскостью проекций V2) – фронтальным следом NV.

Точка пересечения прямой N с профильной плоскостью проекций W3) – профильным следом NW прямой.

Вывод:

· горизонтальный след прямой – это точка, принадлежащая одновременно данной прямой и лежащая в горизонтальной плоскости проекций H1);

· фронтальный след прямой – это точка, принадлежащая одновременно данной прямой и лежащая во фронтальной плоскости проекций V2);

· профильный след прямой – это точка, принадлежащая одновременно данной прямой и лежащая в профильной плоскости проекций W3).

Задача. Построить точки пересечения прямой N с горизонтальной Н1) и фронтальной V2) плоскостями проекций (рис. 15аб).

Анализируя задачу, приходим к выводу, что необходимо построить горизонтальный и фронтальный следы прямой.

1. Построение фронтального следа NV.

Необходимо построить точку, принадлежащую прямой N и фронтальной плоскости проекций. Согласно изложенному ранее материалу, горизонтальная проекция искомой точки должна:

– лежать на оси Х;

– принадлежать горизонтальной проекции прямой N.

Порядок выполнения графической части задачи:

1.1. Отмечаем точку пересечения горизонтальной проекции n прямой N с осью Х, получаем точку nV – горизонтальную проекцию фронтального следа.

1.2. Через точку nV проводим линию связи перпендикулярно оси Х.

1.3. Находим точку пересечения линии связи с фронтальной проекцией n′ прямой N, получаем точку NV – фронтальную проекцию фронтального следа. Через эту точку прямая уходит во вторую четверть (рис. 15а) и в третью четверть (рис. 15б).

2. Построение горизонтального следа NH.

Необходимо построить точку, принадлежащую прямой N и горизонтальной плоскости проекций Н. Согласно изложенному ранее материалу, фронтальная проекция искомой точки должна:

– лежать на оси Х;

– принадлежать фронтальной проекции прямой N.

Порядок выполнения графической части задачи:

2.1. Отмечаем точку пересечения фронтальной проекции n′ прямой N с осью Х, получаем точку nH – фронтальную проекцию горизонтального следа.

2.2. Через точку nH проводим линию связи перпендикулярно оси Х.

2.3. Находим точку пересечения линии связи с горизонтальной проекцией n прямой N, получаем фронтальную проекцию фронтального следа. В этой точке прямая пересекает горизонтальную плоскость и уходит в четвертую четверть (рис. 15а,б).

а
б

Рис. 15. Построение следов прямой линии N:

а – прямая уходит во вторую четверть; б – прямая уходит в третью четверть

Источник

Adblock
detector