Меню

Построить графические формулы соединений

Теоретический материал по химии на тему «Графические формулы неорганических соединений» (11 класс)

Данная разработка позволяет научиться составлять графические формулы неорганических веществ: оксидов, оснований, амфотерных гидроксидов, кислот и солей.

Просмотр содержимого документа
«Теоретический материал по химии на тему «Графические формулы неорганических соединений» (11 класс)»

Очень часто формулы молекул оксидов, оснований, кислот, амфотерных гидроксидов и солей изображают графически. Для этого необходимо знать валентность каждого элемента, входящего в состав молекулы. Валентность элементов изображается черточками. Число черточек, отходящих от химического знака элементов, равно его валентности, например, Н , О =, Al и т.д.

Так как в молекуле свободные валентности отсутствуют, то надо так составить формулу, чтобы число черточек одного элемента соответствовало числу черточек другого элемента. Валентность разных атомов в молекуле взаимонасыщенна (отсутствуют свободные черточки), например, оксид натрия Na2O, в котором натрий одновалентен, а кислород двухвалентен.

Тогда графическая формула оксида имеет вид:

От атома кислорода отходят две черточки, от каждого атома натрия – по одной.

Графическая формула оксида алюминия Al2O3 имеет вид:

Алюминий трехвалентен, а кислород двухвалентен. От каждого атома алюминия отходят три черточки, от атома кислорода – две.

Графические формулы оснований

гидроксид калия гидроксид бария гидроксид алюминия

В молекуле оснований атомы водорода связаны с кислородом.

Графические формулы кислот

В молекулах кислородосодержащих кислот атомы водорода, способные замещаться металлом, связаны с атомом неметалла через кислород:

H O

Н – O N = О Н – О – C – О – Н H – О – P = O

азотная кислота угольная кислота ортофосфорная кислота

В состав уксусной кислоты СН3СООН входят четыре атома водорода, но только один из них связан с кислородом, поэтому в уксусной кислоте только один атом водорода, соединенный с атомом кислорода, способен замещаться атомом металла:

Читайте также:  Как построить железный вагончик

Графические изображения солей

Графическое изображение формул средних и особенно кислых солей часто вызывает затруднения. При их составлении нужно сначала написать графическое изображение формулы кислоты и затем заменить в ней полностью (нормальная соль) или частично (кислая соль) атомы водорода атомами металла. Если в молекулу соли входит несколько кислотных остатков, например, Mg(NO3)2, то нужно писать рядом столько формул кислоты, сколько кислотных остатков входит в молекулу соли, и заменить в них полностью атомы водорода атомами металла.

Графическая формула средней (нормальной) соли Mg(NO3)2 имеет вид:

Источник

Структурно-графические формулы веществ

Эмпирические формулы дают информацию о качественном и количественном составе соединений. Взаимное расположение атомов в молекуле вещества отражают структурно-графические формулы, однако они не показывают пространственное расположение атомов.

При составлении структурно-графических формул можно руководствоваться следующими правилами:

1. Элементы соединяются в соответствии с их валентностью.

2. Черточка в формуле обозначает единичную химическую связь, количество черточек соответствует валентности, например:

3. Состав кислот и оснований следует начинать изображать с центрального атома,

4. Если в молекуле кислоты содержится больше атомов кислорода, чем водорода, то «избыточные» атомы кислорода соединены с центральным атомом двойной связью,

например: HClO4

5. При написании графических формул солей исходят из графических формул кислот, заменяя атомы водорода на атомы металла, учитывая его валентность, например:

Na3PO4 Fe2(SO4)3
KHCO3
CaOHNO3

Структурно-графические формулы некоторых кислот приведены в табл. 5.

2.4. Общие химические свойства основных классов
неорганических веществ

Оксиды ‑ вещества, состоящие из атомов двух элементов, один из которых – кислород в степени окисления (–2). По химическим свойствам их подразделяют на индифферентные, или несолеобразующие (CO, NO), и солеобразующие, которые бывают основными, кислотными и амфотерными.

Читайте также:  Построить правильный четырехугольник вписанный в окружность

Химические свойства основных оксидов

1. Взаимодействуют с кислотами с образованием соли и воды, например:

2. Взаимодействие с кислотными оксидами с образованием солей:

3. Оксиды щелочных и щелочноземельных металлов взаимодействуют с водой с образованием растворимых в воде оснований – щелочей:

Химические свойства кислотных оксидов

1. Общим свойством всех кислотных оксидов является их способность взаимодействовать с основаниями с образованием соли и воды:

2. Кислотные оксиды взаимодействуют с основными оксидами с образованием солей.

3. Большинство кислотных оксидов взаимодействует с водой с образованием кислот:

Очень немногие кислотные оксиды не взаимодействуют с водой. Наиболее известный из них оксид кремния (SiO2).

Химические свойства амфотерных оксидов

1. Амфотерные оксиды взаимодействуют с кислотами с образованием солей и воды.

В этих реакциях амфотерные оксиды играют роль основных.

2. Амфотерные оксиды взаимодействуют с щелочами с образованием солей и воды.

ZnO + 2КОН K2ZnO2 + Н2О,

ZnO + 2КОН + H2O K2[Zn(OH)4].

В этих реакциях амфотерные оксиды играют роль кислотных.

3. Амфотерные оксиды при нагревании взаимодействуют с кислотными оксидами с образованием солей:

4. Амфотерные оксиды при нагревании взаимодействуют с основными оксидами с образованием солей:

Оксиды могут быть получены различными способами:

1. Взаимодействием простых веществ с кислородом:

2. Разложением некоторых оксокислот:

H2SO3 = SO2 + Н2О.

3. Разложением нерастворимых оснований:

Сu(OH)2 CuO+ H2O.

4. Разложением некоторых солей:

СаСО3 СаО + СО2.

Основания ‑сложные вещества, при диссоциации которых в воде образуются гидроксид-ионы и никаких других анионов.

По растворимости в воде основания делятся на две группы: нерастворимые [Fe(OH)3, Си(ОН)2 и др.] и растворимые в воде [КОН, NaOH, Са(ОН)2, Ва(ОН)2 ], или щелочи.

Химические свойства оснований

1. Водные растворы щелочей изменяют окраску индикаторов.

Читайте также:  Как в маткаде построить график тригонометрической функции

Таблица 6 ‑ Изменение цвета индикаторов в растворах

щелочей и кислот

Индикатор Цвет индикатора Цвет индикатора в растворе щелочи (рН > 7) Цвет индикатора в растворе кислоты (рН + (вернее H3O + ), которые образуются в результате электролитической диссоциации молекул кислот:

1. Кислоты одинаково изменяют цвет индикаторов (табл. 7).

2. Кислоты взаимодействуют с основаниями. Например:

3. Кислоты взаимодействуют с основными оксидам:

4. Кислоты взаимодействуют с амфотерными оксидами:

5. Кислоты взаимодействуют с некоторыми средними солями с образованием новой соли и новой кислоты, реакции возможны в том случае, если в результате образуется нерастворимая соль или более слабая (или более летучая) кислота, чем исходная. Например:

6. Кислоты взаимодействуют с металлами. Характер продуктов этих реакций зависит от природы и концентрации кислоты и от активности металла. Например, разбавленная серная кислота, хлороводородная кислота и другие кислоты‑неокислители взаимодействуют с металлами, которые находятся в электрохимическом ряду напряжения левее водорода. В результате реакции образуются соль и газообразный водород:

Кислоты-окислители (концентрированная серная кислота, азотная кислота HNO3 любой концентрации) взаимодействуют и с металлами, стоящими в ряду напряжения после водорода с образованием соли и продукта восстановления кислоты. Например:

1. Бескислородные кислоты получают путем синтеза из простых веществ и последующим растворением продукта в воде.

2. Оксокислоты получают взаимодействием кислотных оксидов с водой.

3. Большинство кислот можно получить взаимодействием солей с кислотами.

Источник

Adblock
detector