Меню

Построить график распределения температуры по толщине конструкции

Распределение температур в ограждающей конструкции

В условиях стационарной теплопередачи распределение температур в конструкции подчиняется определенным закономерностям, поэтому можно определить температуру в любом сечении стены.

Установим, как меняется температура по толщине однослойной стенки, на поверхностях которой заданы постоянные температуры tsi и tse. Подставим в уравнение найденное значение константы С и получим зависимость температуры от толщины

.

, то есть tg α обратно пропорционален коэффициенту теплопроводности.

Следовательно, чем лучше материал проводит тепло, тем меньше угол наклона температурного графика к оси X (и меньше градиент температур), и наоборот.

В многослойной стене график распределения температур представляет собой ломаную линию, каждый участок которой соответствует одному слою конструкции, а угол наклона участка ломаной зависит от теплопроводности материала данного слоя. В плотном теплопроводном слое стены часть графика является пологой, основное изменение температуры отмечается в теплоизоляционном слое.

Рассмотрим две двухслойные стены, состоящие из слоя кирпичной кладки и слоя утеплителя. Материалы и толщины слоев одинаковы, но их расположение различно.

В случае а утеплитель находится с внутренней стороны стены, в варианте б – снаружи. Термические сопротивления этих конструкций равны. Сравним температурные графики. При наружном расположении слоя теплоизоляции температура на поверхности кладки падает незначительно. Это означает, что кладка всегда будет теплой, не будет возникать трещин от температурных деформаций. При внутреннем утеплении стены кирпичная кладка в течение года подвергается воздействию больших колебаний температуры, что приводит к возникновению температурных напряжений в ней; зимой эта стена будет более холодной.

График распределения температур в многослойной конструкции из ломаной линии превратится в прямую, соединяющую tsi и tse, если эту конструкцию вычертить в масштабе термических сопротивлений, то есть по оси абсцисс отложить не толщины слоев δi, а значения их термических сопротивлений Ri = δii.

Рассмотрим для простоты двухслойную стенку, температура на границе слоев – t1. Построим два треугольника: ABD и ACE.

Из Δ ABD ; из Δ ACE .

В масштабе термических сопротивлений температурный график – прямая линия.

На этой закономерности основан графический способ определения температур в любом сечении стены x (рис.3.5). Это же значение можно рассчитать аналитически, зная величину термического сопротивления Rx от внутренней поверхности до данного сечения

Читайте также:  На приватизированной земле построил дом хочу оформить строение

Значение температуры в сечении x можно найти по графику или вычислить по формуле

.

Дата добавления: 2015-05-26 ; Просмотров: 7619 ; Нарушение авторских прав?

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Распределение температуры по сечению ограждения

Важной практической задачей является расчет распределения температуры по сечению ограждения (рис.7). Из дифференциального уравнения (2.1) следует, что оно линейно относительно сопротивления теплопередаче, поэтому можно записать температуру tx в любом сечении ограждения:

, (2.31)

Рис.7. распределение температуры в многослойной стенке. а) в масштабе толщин слоев, б) в масштабе термических сопротивлений

Однако выражение (2.30) относится к ограждению без возмущающих одномерность теплового потока. Для реального ограждения, характеризуемого приведенным сопротивлением теплопередаче при расчете распределения температуры по сечению ограждения надо учитывать уменьшение сопротивлений теплопередаче Rх-в и Rх-н с помощью коэффициента теплотехнической однородности:

. (2.32)

Вопросы для самоконтроля

1. Что такое (физический смысл) коэффициент теплоотдачи на поверхности?

2. Из чего складывается коэффициент теплоотдачи на наружной поверхности ограждения?

3. Из чего складывается коэффициент теплоотдачи на внутренней поверхности ограждения?

4. Из чего складывается термическое сопротивление многослойной ограждающей конструкции с плоскопараллельными слоями по ходу теплового потока.

5. Из чего складывается общее сопротивление теплопередаче многослойной ограждающей конструкции с плоскопараллельными слоями по ходу теплового потока. Напишите формулу общего сопротивления теплопередаче.

6. Физический смысл термического сопротивления многослойной ограждающей конструкции с плоскопараллельными слоями по ходу теплового потока.

7. Физический смысл общего сопротивления теплопередаче многослойной ограждающей конструкции с плоскопараллельными слоями по ходу теплового потока.

8. Физический смысл приведенного сопротивления теплопередаче ограждающей конструкции.

9. Что такое условное сопротивление теплопередаче ограждающей конструкции.

10. Что такое коэффициент теплотехнической однородности ограждающей конструкции.

11. Что такое коэффициент теплопередачи ограждающей конструкции?

12. Напишите формулу теплового потока, передаваемого за счет теплопередачи от внутренней среды с температурой tв к наружной с температурой tн через многослойную стенку.

13. Начертите качественную картинку распределения температуры в двухслойной стенке при известных температурах окружающих сред tв и tн, если λ12.

Читайте также:  Карта израиля с городами на русском языке построить маршрут

14. Начертите качественную картинку распределения температуры в двухслойной стенке при известных температурах окружающих сред tв и tн, если λ1 

Источник

Распределение температур в ограждающей конструкции

В условиях стационарной теплопередачи распределение температур в конструкции подчиняется определенным закономерностям, поэтому можно определить температуру в любом сечении стены.

Установим, как меняется температура по толщине однослойной стенки, на поверхностях которой заданы постоянные температуры tsi и tse (рис.3.2). Подставим в уравнение (2.6) найденное значение константы С и получим зависимость температуры от толщины

. (3.9)

,

то есть tg α обратно пропорционален коэффициенту теплопроводности. Следовательно, чем лучше материал проводит тепло, тем меньше угол наклона температурного графика к оси X (и меньше градиент температур), и наоборот.

В многослойной стене график распределения температур представляет собой ломаную линию (рис. 3.3), каждый участок которой соответствует одному слою конструкции, а угол наклона участка ломаной зависит от теплопроводности материала данного слоя. В плотном теплопроводном слое стены часть графика является пологой, основное изменение температуры отмечается в теплоизоляционном слое.

Рассмотрим две двухслойные стены, состоящие из слоя кирпичной кладки и слоя утеплителя. Материалы и толщины

слоев одинаковы, но их расположение различно (рис. 3.4). В случае а утеплитель находится с внутренней стороны стены, в варианте б – снаружи. Термические сопротивления этих конструкций равны. Сравним температурные графики. При наружном расположении слоя теплоизоляции температура на поверхности кладки падает незначительно. Это означает, что кладка всегда будет теплой, не будет возникать трещин от температурных деформаций. При внутреннем утеплении стены кирпичная кладка в течение года подвергается воздействию больших колебаний температуры, что приводит к возникновению температурных напряжений в ней; зимой эта стена будет более холодной.

График распределения температур в многослойной конструкции из ломаной линии превратится в прямую, соединяющую tsi и tse, если эту конструкцию вычертить в масштабе термических сопротивлений, то есть по оси абсцисс отложить не толщины слоев δi, а значения их термических сопротивлений Ri = δii. Докажем это (рис. 3.5).

Читайте также:  Как построить дом с мансардой и эркером

Рассмотрим для простоты двухслойную стенку, температура на границе слоев – t1. Построим два треугольника: ABD и ACE.

Из Δ ABD ;

Из Δ ACE .

На этой закономерности основан графический способ определения температур в любом сечении стены x (рис.3.5). Это же значение можно рассчитать аналитически, зная величину термического сопротивления Rx от внутренней поверхности до данного сечения

. (3.10)

Если температуры поверхностей стены tsi и tse неизвестны, но заданы постоянные температуры воздуха внутри и снаружи помещения tint и text и коэффициенты теплоотдачи aint и aext, по оси абсцисс откладываются последовательно: сопротивление теплоотдаче у внутренней поверхности 1/aint, термические сопротивления слоев, начиная от внутреннего, Ri, и наконец, сопротивление теплоотдаче у наружной поверхности 1/aext. Температурный график – прямая линия, соединяющая значения tint и text (рис. 3.6).

Значение температуры в сечении x можно найти по графику или вычислить по формуле

. (3.11)

Определить сопротивление теплопередаче R и значения температур на границах конструктивных слоев стены с внутренним утеплением: а) графически; б) аналитически.

Приняты следующие условия на сторонах ограждения:

Условия эксплуатации ограждающих конструкций – Б.

1.Из таблицы Приложения Б выпишем соответствующие расчетные коэффициенты теплопроводности для материалов стены:

2.Определим термические сопротивления слоев и сопротивления теплоотдаче у поверхностей:

3. Сопротивление теплопередаче стены равно (3.6):

R= 0,12 + 0,03 + 1,92 + 0,33 + 0,04 = 2,44 м 2 ·ºС/Вт.

4. Определим значения температур на границах слоев:

а) Графический метод

Построим конструкцию в масштабе термических сопротивлений (рис.3.6). Отложим значения температур воздуха tint и text на границах воздушных слоев у поверхностей стены. Соединим эти точки прямой линией – получим температурный график. Точки пересечения этого графика с границами слоев дают значения температур:

б) Аналитический способ

Вычислим температуры по формуле (3.11):

tsi = 20 – [(20 + 15)/2,44](0,12 + 0) = 18,28 ºС;

t1 = 20 – [(20 + 15)/2,44](0,12 + 0,03) = 17,85 ºС;

Дата добавления: 2015-05-26 ; Просмотров: 6940 ; Нарушение авторских прав?

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Adblock
detector