Меню

Построить график решения дифференциального уравнения

10. Графическое представление решений дифференциальных уравнений

Графическое представление решений дифференциальных уравнений

Применение функции odeplot пакета plots

Для обычного графического представления результатов решения дифференциальных уравнений может использоваться функция odeplot из описанного выше пакета plots. Эта функция используется в следующем виде:

На рис. 13.5 представлен пример решения одиночного дифференциального уравнения с выводом решения у(х) с помощью функции odeplot.

В этом примере решается дифференциальное уравнение:

при у(0) = 2 и x, меняющемся от-5 до 5. Левая часть уравнения записана с помощью функции вычисления производной diff. Результатом построения является график решения у(х).

В другом примере (рис. 13.6) представлено решение системы из двух нелинейных дифференциальных уравнений. Здесь с помощью функции odeplot строятся графики двух функций. —у(х) и z(x).

В этом примере решается система:

Иногда решение системы из двух дифференциальных уравнений (или одного дифференциального уравнения второго порядка) представляется в виде фазового портрета — при этом по осям графика откладываются значения у(х) и z(х) при изменении х в определенных пределах. Рисунок 13.7 демонстрирует построение фазового портрета для системы, представленной выше.

Обычное решение, как правило, более наглядно, чем фазовый портрет решения. Однако для специалистов (например, в теории колебаний) фазовый портрет порою дает больше информации, чем обычное решение. Он более трудоемок; для построения, поэтому возможность Марle 7 быстро строить фазовые портреты трудно переоценить.

Рис. 13.5. Пример решения одиночного дифференциального уравнения

Рис. 13.6. Пример решения системы из двух дифференциальных уравнений

Рис. 13.7. Представление решения системы дифференциальных уравнений в виде фазового портрета

Источник

Как решать дифференциальные уравнения

Дифференциальные уравнения бывают обыкновенными и в частных производных. В этой статье мы будем говорить об обыкновенных уравнениях и о том, как их решать.

Читайте также:  Игры построй ракету и полети в космос

Перечислим самые встречающиеся в контрольных работах типы уравнений:

Решение дифференциальных уравнений проходит по следующему алгоритму:

ОБЯЗАТЕЛЬНО! Чтобы успешно решать дифференциальные уравнения необходимо уметь находить интегралы. Поэтому, если вы забыли данную тему, то её нужно вспомнить!

Дифференциальные уравнения первого порядка

ДУ с разделяющимися переменными

СОВЕТ: Если не удается определить тип диффура первого порядка, то рекомендуем мысленно попытаться разделить переменные иксы от игреков. Возможно перед вами хитрое дифференциальное уравнение с разделяющимися переменными.

Алгоритм нахождения общего решения:

После замены производной игрека исходное уравнение приобретает такой формат:

Навешиваем знак интеграла на левую и правую часть, а затем решаем интегралы:

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ $$y = \ln(1+x^2)$$

Однородные ДУ

Решается по следующему алгоритму:

Интегрируем обе части:

$$\lambda x \cdot \lambda y + (\lambda y)^2 = (2 (\lambda x)^2 + \lambda x\cdot \lambda y)y’$$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ $$y^2 = Cxe^\frac<-y>$$

Линейные неоднородные ДУ

Алгоритм метода Бернулли:

Алгоритм метода вариации произвольной постоянной:

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

ДУ Бернулли

Ответ $$y = \frac<1>$$

ДУ в полных дифференциалах

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Читайте также:  Как построить красивый варп шоп
Ответ $$x^2+5xy+y^3 = C.$$

Дифференциальные уравнения второго порядка

ДУ допускающие понижение порядка

Дифференциальные уравнения, допускающие понижение порядка бывают двух видов:

Ответ $$y = \ln|x|$$ Ответ $$y = x + 1$$

Линейные однородные ДУ с постоянными коэффицентами

В зависимости от получившихся корней имеем общее решение в различных видах:

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ $$y = C_1 e^ <-2x>+ C_2 e^$$

Линейные неоднородные ДУ с постоянными коэффициентами

Ответ $$y = C_1 \cos x + C_2 \sin x + x\cos x + x^2\sin x$$

Метод Лагранжа

Данный метод позволяет решать линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами даже в тех, случаях, когда правая часть уравнения не подходит под табличный вид. В этом случае целесообразно применить данный метод решения.

Источник

Построить график решения дифференциального уравнения

Общее решение дифференциальных уравнений.

Общее решение неоднородного линейного дифференциального уравнения всегда выводится так, чтобы была четко видна, структура этого решения. Как известно, общее решение неоднородного линейного дифференциального уравнения равно сумме общего решения соответствующего однородного дифференциального уравнения и частного решения этого же неоднородного дифференциального уравнения. Поэтому в строке вывода решение неоднородного линейного дифференциального уравнения всегда состоит из слагаемых, которые содержат произвольные постоянные (это общее решения соответствующего однородного дифференциального уравнения), и слагаемых без произвольных постоянных (это частное решения этого же неоднородного дифференциального уравнения).

Задание 1.1.

de : =

1

deq :=

3. Найти общее решение дифференциального уравнения порядка y »+ k 2 y =sin( qx ) в двух случаях: q ¹ k и q = k (резонанс).

Читайте также:  Как построить каркас для теплицы своими руками

de :=

Замечание : в обоих случаях частное решение неоднородного уравнения и общее решение, содержащее произвольные постоянные, выводятся отдельными слагаемыми.

Фундаментальная (базисная) система решений.

Задание 1.2.

Найти фундаментальную систему решений дифференциального уравнения: y (4) +2 y »+ y =0.

de : =

> dsolve(de, y(x), output=basis);

Решение задачи Коши или краевой задачи.

Задание 1.3.

2. Найти решение краевой задачи: , , . Построить график решения.

de : =

Замечание : для построения графика решения предварительно следует отделить правую часть полученного выражения.

Системы дифференциальных уравнений.

Задание 1.4.

Найти решение системы дифференциальных уравнений:

Приближенное решение дифференциальных уравнений с помощью степенных рядов.

Для многих типов дифференциальных уравнений не может быть найдено точное аналитическое решение. В этом случае дифференциальное уравнение можно решить с помощью приближенных методов, и, в частности, с помощью разложения в степенной ряд неизвестной функции.

Задание 1.5.

1. Найти решение задачи Коши: , в виде степенного ряда с точностью до 5-го порядка.

y(0)=0>, y(x), type=series);

В полученном решении слагаемое означает, что точность разложения была до 5-го порядка.

> restart; Order:=4: de:=diff(y(x),x$2)-

Замечание : в полученном разложении запись D(y)(0) обозначает производную в нуле: y ‘(0). Для нахождения частого решения осталось задать начальные условия:

3. Найти приближенное решение в виде степенного ряда до 6-го порядка и точное решение задачи Коши: , , , . Построить на одном рисунке графики точного и приближенного решений.

de : =

cond :=y(0)=1, D(y)(0)=1, D (2) (y)(0)=1

y( x )=

y( x )=

Исправляем ошибки: Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter

Источник

Adblock
detector