Графики. Решение задач. Чтение и построение графиков
Цель: Научить решать графические задачи.
Воспитательная цель: успешно сдать экзамен и быть конкурентоспособным.
Ход урока
1. Организационный момент – 5 мин.
2. Проверка домашнего задания.
1. Тело, падающее без начальной скорости с некоторой высоты h1, прошло последние h2 = 30 м за время t2 = 0,5 с. Найти высоту падения h1 и время падения t1. Сопротивлением воздуха пренебречь.
Решение: За начало координат О возьмем точку, находящуюся на высоте h1 от поверхности Земли, ось OY направим вертикально вниз (см. рис.).
Время будем отсчитывать с момента начала движения тела. В начальный момент времени y = 0, oy= 0. Проекция ускорения на ось OY равна аy = g. Тогда уравнение, выражающее зависимость координат тела от времени, будет иметь вид:
. (1)
В момент времени t1 – t2 координата тела будет равна:
. (2)
Когда тело упадет на землю, у = h1, t = t1. Согласно уравнению (1)
. (3)
Подставив это значение h1 в уравнение (2), получим:
.
Отсюда после преобразований найдем
. (4)
Подставив численные значения в формулы (4) и (3) получим
Ответ: = 6,3 с, h1 = 195 м.
3. Актуализация знаний, умений, навыков.
1. По графику зависимости координаты х от времени t, изображенной на рисунке построить графики зависимости и
На рисунке ОА и ВС – участки парабол.
Решение: Соответствующие графики показаны на рис. б) и в). При построении их учтено, что в течение промежутка времени от 0 до t1 тело двигалось равноускоренно, от t1 до t2 – равномерно, от t2 до t3 – равнозамедленно, от t3 до t4 – находилось в состоянии покоя.
2. По графику зависимости ускорения от времени установите скорость в момент времени 15 с, если в момент времени 1 с скорость равна 3 м/с.
Решение: Для удобства решения задачи обозначим точки, соответствующие временам t = 2, 5, 9, 12, 15 секунд соответственно А В С Д Е. Каждый участок зависимости рассмотрим отдельно.
На участке ОА тело двигалось равномерно (без ускорения) и в конце 2-ой секунды (в т. A) будет иметь скорость =3 м/с. На участках АВ и СД тело двигалось с переменным ускорением. Но, как видно из рисунка, ускорение на этих участках изменяется линейно с течением времени – на участке АВ оно растет, на участке СД оно (ускорение) уменьшается. Поэтому на участках АВ и СД можно считать движение равноускоренным с ускорением, найденным как среднеарифметическое, т.е.
Принимая движение на участке АВ эквивалентным равноускоренному, вычислим скорость в конце 5-ой секунды, используя формулу:
,
где t – время движения на участке АВ, t = 3 с
93 м/с.
.
На участке СД скорость рассчитывается та же, как и на участке АВ с учетом ускорения:
.
На участке ДЕ тело двигалось без ускорения (равномерно), значит скорость его не изменилась к концу 15-ой секунды.
Ответ: υЕ = 423 м/с.
4. Закрепление знаний, умений, навыков.
Попробовать решить самостоятельно, проверить, написав правильное решение на доске.
1. Тело движется с начальной скоростью 2 м/c в течении 6 с. Построить графики пути и скорости.
2. Дан график зависимости координаты движения от времени. Построить график проекции скорости и пути от времени движения для t [0; 8 с].
t [0; 8 с]
Для 0 t
2 с график координаты – прямая линия, следовательно, движение равномерное и прямолинейное.
Определим проекцию скорости
,
= –2 м/с 0
S3 = v3 (t – t03) S = 2 м/с (t – 6 с)
S = 2 м/с (8–6) с = 4 м.
Путь за 8 с равен: S = S1 + S3 = 8 (м).
Построим графики зависимости проекции скорости и пути от времени для этого движения.
Источник
Уравнение движения, графики равномерного прямолинейного движения
п.1. Прямолинейное равномерное движение на координатной прямой
Система отсчета, с помощью которой можно описать прямолинейное движение состоит из:
1) тела отсчета; 2) координатной прямой; 3) часов для отсчета времени.
Пусть телом отсчета будет дом.
В начальный момент времени машина стоит в 20 м справа от дома.
Рассмотрим движение машины со скоростью 10 м/с вправо.
Направим координатную прямую параллельно вектору скорости, вправо.
Составим таблицу перемещений за первые 4 секунды:
Стартуя с точки x=20, машина каждую секунду удаляется от дома еще на 10 м.
Пройденный путь за 2 секунды – 10·2=20 м, за 3 секунды – 10·3=30 м, за t секунд s=vt метров. Значит, для произвольного времени t можем записать координату x в виде: \begin
Если при тех же начальных условиях и направлении координатной прямой машина будет двигаться влево, получим таблицу:
В этом случае координата x в любой момент времени t имеет вид: \begin
п.2. Уравнение прямолинейного равномерного движения
Зависимость координаты тела от времени в механике называют уравнением движения.
Если уравнение движения известно, то мы можем решить основную задачу механики.
п.3. Удобная система отсчета для решения задачи о прямолинейном движении
При решении задачи можно выбрать различные тела отсчета и связать с ними различные системы координат. Как правило, некоторая система отсчета является наиболее удобной для решения данной задачи в том смысле, что в ней уравнение движения выглядит и решается проще, чем в других системах.
При решении задач на прямолинейное движение телом отсчета может быть неподвижная поверхность (земля, пол, стол и т.п.), само движущееся тело или другое тело.
При этом системой координат является координатная прямая, параллельная направлению движения (вектору перемещения) тела, уравнение движения которого мы хотим получить.
Проекции скорости и перемещения на координатную прямую могут быть положительными, равными нулю или отрицательными. Величины скорости и перемещения будут равны длинам соответствующих проекций.
п.4. График движения x=x(t)
Сравним полученное уравнение движения \(x(t)=x_0+v_x t\) с уравнением прямой \(y(x)=kx+b\) (см. §38 справочника по алгебре для 7 класса).
В уравнении движения роль углового коэффициента \(k\) играет проекция скорости \(v_x\), а роль свободного члена \(b\) – начальная координата \(x_0\).
Построим графики зависимости координаты от времени для нашего примера: |
п.5. Как найти уравнение движения по графику движения?
п.6. График скорости vx=vx(t)
Для рассмотренного примера:
п.7. Как найти путь и перемещение по графику скорости?
Проекция перемещения может быть как положительной, так и отрицательной или равной 0.
п.8. Задачи
Задача 1. Спортсмен бежит по прямолинейному участку дистанции с постоянной скоростью 8 м/с. Примите \(x_0=0\) и запишите уравнение движения.
а) Постройте график движения \(x=x(t)\) и найдите с его помощью, сколько пробежит спортсмен за \(t_1=5\ с\), за \(t_2=10\ с\);
б) постройте график скорости \(v=v(t)\) и найдите с его помощью, какой путь преодолеет спортсмен за промежуток времени \(\triangle t=t_2-t_1\)?
По условию \(x_0=0,\ v_x=8\).
Уравнение движения: \(x=x_0+v_x t=0+8t=8t\)
а) Строим график прямой \(x=8t\) по двум точкам:
Задача 2. Космический корабль движется прямолинейно с постоянной скоростью.
Известно, что через 1 час после старта корабль находился на расстоянии 38 тыс.км от астероида Веста, а через 2 часа после старта – на расстоянии 56 тыс.км.
а) постройте график движения корабля, найдите по графику уравнение движения.
б) на каком расстоянии от астероида находился корабль в начальный момент времени?
в) на каком расстоянии от астероида будет находиться корабль через 4 часа после старта?
г) чему равна скорость корабля в километрах в секунду?
б) В начальный момент времени корабль находился на расстоянии \(x_0=20\) тыс.км от астероида.
Источник