Меню

Построить график такой периодической функции с периодом т 1

Периодические функции
методическая разработка по алгебре (10 класс) по теме

Презентация к уроку алгебры и началам анализа в 10 классе по теме «Периодические функции» по программе А.Г.Мордковича, П.Е.Семёнова (профильный уровень)

Скачать:

Предварительный просмотр:

Подписи к слайдам:

Алгебра и начала анализа, 10 класс (профильный уровень) А.Г.Мордкович, П.Е.Семёнов Учитель Волкова С.Е.

Определение 2 Функцию, имеющую отличный от нуля период Т, называют периодической. Если функция y = f (x), x ∈ X имеет период Т, то любое число, кратное Т (т.е. число вида кТ, к ∈ Z ), также является её периодом.

Наименьший период среди положительных периодов периодической функции называется основным периодом данной функции.

Примеры 2. Периодическая функция y = f(x) определена для всех действительных чисел. Её период равен 5, а f(-1) = 1. Найти f(-12), если 2f(3) – 5f(9) = 9. Решение Т = 5 F(-1) = 1 f(9) = f(-1 +2T) = 1⇨ 5f(9) = 5 2f(3) = 9 + 5f(9) = 14 ⇨f(3)= 7 F(-12) = f(3 – 3T) = f(3) = 7 Ответ:7.

Используемая литература А.Г.Мордкович, П.В.Семёнов. Алгебра и начала анализа (профильный уровень), 10 класс А.Г.Мордкович, П.В.Семёнов. Алгебра и начала анализа (профильный уровень), 10 класс. Методическое пособие для учителя

По теме: методические разработки, презентации и конспекты

Обощающий урок по данной теме проводится в виде игры, с использованием элементов технологии педагогических мастерских.

Внеклассное мероприятие раскрывает историю создания периодического закона и периодической системы Д.И. Менделеева. Информация изложена в стихотворной форме, которая способствует быстрому запоминанию м.

Открытию закона предшествовала длительная и напряженная научная работа Д.И. Менделеева в течение 15 лет, а дальнейшему его углублению было отдано еще 25 лет.

Конспект открытого урока по теме «Периодический закон и периодическая система химических элементов Д.И. Менделеева. Периоды и группы». Программа Н. Е. Кузнецовой.

Читайте также:  Как построить развернутый угол

материал для практикума по теме функции.

Систематизация свойств периодических функций. Их применение при решении различных задач математического анализа.

Задание:1. Законспектировать краткий справочный материал.2. Офрмить решение типовых задач.3. Решить N1,N2,N3.

Источник

Исследование функции на периодичность

Разделы: Математика

Цель: обобщить и систематизировать знания учащихся по теме “Периодичность функций”; формировать навыки применения свойств периодической функции, нахождения наименьшего положительного периода функции, построения графиков периодических функций; содействовать повышению интереса к изучению математики; воспитывать наблюдательность, аккуратность.

Оборудование: компьютер, мультимедийный проектор, карточки с заданиями, слайды, часы, таблицы орнаментов, элементы народного промысла

“Математика – это то, посредством чего люди управляют природой и собой”
А.Н. Колмогоров

I. Организационный этап.

Проверка готовности учащихся к уроку. Сообщение темы и задач урока.

II. Проверка домашнего задания.

Домашнее задание проверяем по образцам, наиболее сложные моменты обсуждаем.

III. Обобщение и систематизация знаний.

1. Устная фронтальная работа.

1) Сформируйте определение периода функции
2) Назовите наименьший положительный период функций y=sin(x), y=cos(x)
3). Назовите наименьший положительный период функций y=tg(x), y=ctg(x)
4) Докажите с помощью круга верность соотношений:

y=sin(x) = sin(x+360º)
y=cos(x) = cos(x+360º)
y=tg(x) = tg(x+18 0º)
y=ctg(x) = ctg(x+180º)

tg(x+ π n)=tgx, n € Z
ctg(x+ π n)=ctgx, n € Z

sin(x+2 π n)=sinx, n € Z
cos(x+2 π n)=cosx, n € Z

5) Как построить график периодической функции?

1) Доказать следующие соотношения

a) sin( 740º ) = sin(2 0º )
b) cos( 54º ) = cos(-1026º)
c) sin(-1000º) = sin( 80º )

2. Доказать, что угол в 540º является одним из периодов функции y= cos(2x)

3. Доказать, что угол в 360º является одним из периодов функции y=tg(x)

a) tg 375º
b) ctg 530º
c) sin 1268º
d) cos (-7363º)

5. Где вы встречались со словами ПЕРИОД, ПЕРИОДИЧНОСТЬ?

Ответы учащихся: Период в музыке – построение, в котором изложено более или менее завершенная музыкальная мысль. Геологический период – часть эры и разделяется на эпохи с периодом от 35 до 90 млн. лет.

Период полураспада радиоактивного вещества. Периодическая дробь. Периодическая печать – печатные издания, появляющиеся в строго определенные сроки. Периодическая система Менделеева.

6. На рисунках изображены части графиков периодических функций. Определите период функции. Определить период функции.

7. Где в жизни вы встречались с построением повторяющихся элементов?

Ответ учащихся: Элементы орнаментов, народное творчество.

IV. Коллективное решение задач.

(Решение задач на слайдах.)

Рассмотрим один из способов исследования функции на периодичность.

Задача 1. Найдите наименьший положительный период функции f(x)=1+35>

Решение: Предположим, что Т-период данной функции. Тогда f(x+T)=f(x) для всех x € D(f), т.е.

Положим x=-0,25 получим

Мы получили, что все периоды рассматриваемой функции (если они существуют) находятся среди целых чисел. Выберем среди этих чисел наименьшее положительное число. Это 1. Проверим, не будет ли оно и на самом деле периодом 1.

Так как = при любом Т, то f(x+1)=3<(x+0.25)+1>+1=3+1=f(x), т.е. 1 – период f. Так как 1 – наименьшее из всех целых положительных чисел, то T=1.

Задача 2. Показать, что функция f(x)=cos 2 (x) периодическая и найти её основной период.

Задача 3. Найдите основной период функции

Допустим Т-период функции, тогда для любого х справедливо соотношение

sin(1,5Т)+5cos(0,75Т)=5

– sin(1,5Т)+5cos(0,75Т)=5

cos=1

=2 π n, n € Z

T=, n € Z

Выберем из всех “подозрительных” на период чисел наименьшее положительное и проверим, является ли оно периодом для f. Это число

f(x+)=sin(1,5x+4 π )+5cos(0,75x+2 π )= sin(1,5x)+5cos(0,75x)=f(x)

Значит – основной период функции f.

Задача 4. Проверим является ли периодической функция f(x)=sin(x)

Пусть Т – период функции f. Тогда для любого х

Если х=0, то sin|Т|=sin0, sin|Т|=0 Т= π n, n € Z.

Предположим. Что при некотором n число π n является периодом

рассматриваемой функции π n>0. Тогда sin| π n+x|=sin|x|

Отсюда вытекает, что n должно быть одновременно и четным и нечетным числом, а это невозможно. Поэтому данная функция не является периодической.

Задача 5. Проверить, является ли периодической функция

f(x)=

Пусть Т – период f, тогда

, отсюда sinT=0, Т= π n, n € Z. Допустим, что при некотором n число π n действительно является периодом данной функции. Тогда и число 2 π n будет периодом

Так как числители равны, то равны и их знаменатели, поэтому

Значит, функция f не периодическая.

Работа в группах.

Задания для группы 1.

Проверьте является ли функция f периодической и найдите ее основной период (если существует).

Задания для группы 2.

Проверьте является ли функция f периодической и найдите ее основной период (если существует).

Задания для группы 3.

По окончании работы группы презентуют свои решения.

VI. Подведение итогов урока.

Учитель выдаёт учащимся карточки с рисунками и предлагает закрасить часть первого рисунка в соответствии с тем, в каком объёме, как им кажется, они овладели способами исследования функции на периодичность, а в части второго рисунка – в соответствии со своим вкладом в работу на уроке.

Мои умения исследовать
функции на периодичность
Мой вклад в работу
на уроке

VII. Домашнее задание

1). Проверьте, является ли функция f периодической и найдите её основной период (если он существует)

Источник

Adblock
detector