Меню

Построить вариационный интервальный ряд статистика

Интервальный ряд

Условие:

Имеются данные о возрастном составе рабочих (лет): 18, 38, 28, 29, 26, 38, 34, 22, 28, 30, 22, 23, 35, 33, 27, 24, 30, 32, 28, 25, 29, 26, 31, 24, 29, 27, 32, 25, 29, 29.

Решение:

1) По формуле Стерджесса совокупность надо разделить на 1 + 3,322 lg 30 = 6 групп.

Максимальный возраст – 38, минимальный – 18.

Ширина интервала Так как концы интервалов должны быть целыми числами, разделим совокупность на 5 групп. Ширина интервала – 4.

Для облегчения подсчетов расположим данные в порядке возрастания: 18, 22, 22, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 28, 29, 29, 29, 29, 29, 30, 30, 31, 32, 32, 33, 34, 35, 38, 38.

Распределение возрастного состава рабочих

Графически ряд можно изобразить в виде гистограммы или полигона. Гистограмма – столбиковая диаграмма. Основание столбика – ширина интервала. Высота столбика равна частоте.

Полигон (или многоугольник распределения) – график частот. Чтобы его построить по гистограмме, соединяем середины верхних сторон прямоугольников. Многоугольник замыкаем на оси Ох на расстояниях, равных половине интервала от крайних значений х.

Мода (Мо) – это величина изучаемого признака, которая в данной совокупности встречается наиболее часто.

Чтобы определить моду по гистограмме, надо выбрать самый высокий прямоугольник, провести линию от правой вершины этого прямоугольника к правому верхнему углу предыдущего прямоугольника, и от левой вершины модального прямоугольника провести линию к левой вершине последующего прямоугольника. От точки пересечения этих линий провести перпендикуляр к оси х. Абсцисса и будет модой. Мо ≈ 27,5. Значит, наиболее часто встречаемый возраст в данной совокупности 27-28 лет.

Медиана (Mе) – это величина изучаемого признака, которая находится в середине упорядоченного вариационного ряда.

Медиану находим по кумуляте. Кумулята – график накопленных частот. Абсциссы – варианты ряда. Ординаты – накопленные частоты.

Для определения медианы по кумуляте находим по оси ординат точку, соответствующую 50% накопленных частот (в нашем случае 15), проводим через неё прямую, параллельно оси Ох, и от точки её пересечения с кумулятой проводим перпендикуляр к оси х. Абсцисса является медианой. Ме ≈ 25,9. Это означает, что половина рабочих в данной совокупности имеет возраст менее 26 лет.

Источник

3. Интервальный вариационный ряд.
Гистограмма относительных частот

На предыдущем уроке по математической статистике (Занятие 1) мы разобрали дискретный вариационный ряд (Занятие 2), и сейчас на очереди интервальный. Его понятие, графическое представление (гистограмма и эмпирическая функция распределения), а также рациональные методы вычислений, как ручные, так и программные. В том числе будут рассмотрены задачи с достаточно большим количеством (100-200) вариант – что делать в таких случаях, как обработать большой массив данных.

Предпосылкой построения интервального вариационного ряда (ИВР) является тот факт, что исследуемая величина принимает слишком много различных значений. Зачастую ИВР появляется в результате измерения непрерывной характеристики изучаемых объектов. Типично – это время, масса, размеры и другие физические характеристики. Подходящие примеры встретились в первой же статье по матстату, вспоминаем Константина, который замерял время на лабораторной работе и Фёдора, который взвешивал помидоры.

Читайте также:  Как построить точку пересечения прямой с плоскостью для тупых

Для изучения интервального вариационного ряда затруднительно либо невозможно применить тот же подход, что и для дискретного ряда. Это связано с тем, что ВСЕ варианты многих ИВР различны. И даже если встречаются совпадающие значения, например, 50 грамм и 50 грамм, то связано это с округлением, ибо полученные значения всё равно отличаются хоть какими-то микрограммами.

Поэтому для исследования ИВР используется другой подход, а именно, определяется интервал, в пределах которого варьируются значения, затем данный интервал делится на частичные интервалы, и по каждому интервалу подсчитываются частоты – количество вариант, которые в него попали.

Разберём всю кухню на конкретной задаче, и чтобы как-то разнообразить физику, я приведу пример с экономическим содержанием, кои десятками предлагают студентам экономических отделений. Деньги, строго говоря, дискретны, но если надо, непрерывны :), и по причине слишком большого разброса цен, для них целесообразно строить интервальный ряд:

По результатам исследования цены некоторого товара в различных торговых точках города, получены следующие данные (в некоторых денежных единицах):

Требуется составить вариационный ряд распределения, построить гистограмму и полигон относительных частот + бонус – эмпирическую функцию распределения.

Такое обывательское исследование проводит каждый из нас, начиная с анализа цены на пакет молока вот это дожил в нескольких магазинах, и заканчивая ценами на недвижимость по гораздо бОльшей выборке. Что называется, не какие-то там унылые сантиметры.

Поэтому представьте свой любимый товар / услугу и наслаждайтесь решением🙂

Очевидно, что перед нами выборочная совокупность объемом наблюдений (таблица 10*3), и вопрос номер один: какой ряд составлять – дискретный или интервальный? Смотрим на таблицу: среди предложенных цен есть одинаковые, но их разброс довольно велик, и поэтому здесь целесообразно провести интервальное разбиение. К тому же цены могут быть округлёнными.

Начнём с экстремальной ситуации, когда у вас под рукой нет Экселя или другого подходящего программного обеспечения. Только ручка, карандаш, тетрадь и калькулятор.

Тактика действий похожа на исследование дискретного вариационного ряда. Сначала окидываем взглядом предложенные числа и определяем примерный интервал, в который вписываются эти значения. «Навскидку» все значения заключены в пределах от 5 до 11. Далее делим этот интервал на удобные подынтервалы, в данном случае напрашиваются промежутки единичной длины. Записываем их на черновик:

Теперь начинаем вычёркивать числа из исходного списка и записывать их в соответствующие колонки нашей импровизированной таблицы:

После этого находим самое маленькое число в левой колонке и самое большое значение – в правой. Тут даже ничего искать не пришлось, честное слово, не нарочно получилось:)
ден. ед. – хорошим тоном считается указывать размерность.

Вычислим размах вариации:
ден. ед. – длина общего интервала, в пределах которого варьируется цена.

Теперь его нужно разбить на частичные интервалы. Сколько интервалов рассмотреть? По умолчанию на этот счёт существует формула Стерджеса:

, где десятичный логарифм* от объёма выборки и – оптимальное количество интервалов, при этом результат округляют до ближайшего левого целого значения.

Читайте также:  Как построить боксы под автосервис

* есть на любом более или менее приличном калькуляторе

В нашем случае получаем:
интервалов.

Следует отметить, что правило Стерджеса носит рекомендательный, но не обязательный характер. Нередко в условии задачи прямо сказано, на какое количество интервалов нужно проводить разбиение (на 4, 5, 6, 10 и т.д.), и тогда следует придерживаться именно этого указания.

Длины частичных интервалов могут быть различны, но в большинстве случаев использует равноинтервальную группировку:
– длина частичного интервала. В принципе, здесь можно было не округлять и использовать длину 0,96, но удобнее, ясен день, 1.

И коль скоро мы прибавили 0,04, то по 5 частичным интервалам у нас получается «перебор»: . Посему от самой малой варианты отмеряем влево 0,1 влево (половину «перебора») и к значению 5,7 начинаем прибавлять по , получая тем самым частичные интервалы. При этом сразу рассчитываем их середины (например, ) – они требуются почти во всех тематических задачах:

– убеждаемся в том, что самая большая варианта вписалась в последний частичный интервал и отстоит от его правого конца на 0,1.

Далее подсчитываем частоты по каждому интервалу. Для этого в черновой «таблице» обводим значения, попавшие в тот или иной интервал, подсчитываем их количество и вычёркиваем:

Так, значения из 1-го интервала я обвёл овалами (7 штук) и вычеркнул, значения из 2-го интервала – прямоугольниками (11 штук) и вычеркнул и так далее.

Правило: если варианта попадает на «стык» интервалов, то её следует относить в правый интервал. У нас такая варианта встретилась одна: – и её нужно причислить к интервалу .

В результате получаем интервальный вариационный ряд, при этом обязательно убеждаемся в том, что ничего не потеряно: , и, кроме того, рассчитываем относительные частоты по каждому интервалу, которые уместно округлить до двух знаков после запятой:

Дело за чертежами. Для ИВР чаще всего требуется построить гистограмму.

Гистограмма относительных частот – это фигура, состоящая из прямоугольников, ширина которых равна длинам частичных интервалов, а высота – соответствующим относительным частотам:

При этом вполне допустимо использовать нестандартную шкалу по оси абсцисс, в данном случае я начал нумерацию с четырёх.

Площадь гистограммы равна единице, и это статистический аналог функции плотности распределения непрерывной случайной величины. Построенный чертёж даёт наглядное и весьма точное представление о распределении цен на ботинки по всей генеральной совокупности. Но это при условии, что выборка представительна.

Вместе с гистограммой нередко требуют построить полигон. Без проблем, полигон относительных частот – это ломаная, соединяющая соседние точки , где – середины интервалов:

Автоматизируем решение в Экселе:

Как составить ИВР и представить его графически? (Ютуб)

И бонус – эмпирическая функция распределения. Она определяется точно так же, как в дискретном случае:

, где – количество вариант СТРОГО МЕНЬШИХ, чем «икс», который «пробегает» все значения от «минус» до «плюс» бесконечности.

Но вот построить её для интервального ряда намного проще. Находим накопленные относительные частоты:

Читайте также:  Как построить дом у озера в minecraft

И строим кусочно-ломаную линию, с промежуточными точками , где – правые концы интервалов, а – относительная частота, которая успела накопиться на всех «пройденных» интервалах:

При этом если и если .

Напоминаю, что данная функция не убывает, принимает значения из промежутка и, кроме того, для ИВР она ещё и непрерывна.

Эмпирическая функция распределения является аналогом функции распределения НСВ и приближает теоретическую функцию , которую теоретически, а иногда и практически можно построить по всей генеральной совокупности.

Помимо перечисленных графиков, вариационные ряды также можно представить с помощью кумуляты и огивы частот либо относительных частот, но в классическом учебном курсе эта дичь редкая, и поэтому о ней буквально пару абзацев:

Кумулята – это ломаная, соединяющая точки:

* либо – для дискретного вариационного ряда;
либо – для интервального вариационного ряда.

* – накопленные «обычные» частоты

В последнем случае кумулята относительных частот представляет собой «главный кусок» недавно построенной эмпирической функции распределения.

Огива – это обратная функция по отношению к кумуляте – здесь варианты откладываются по оси ординат, а накопленные частоты либо относительные частоты – по оси абсцисс.

С построением данных линий, думаю, проблем быть не должно, чего не скажешь о другой проблеме. Хорошо, если в вашей задаче всего лишь 20-30-50 вариант, но что делать, если их 100-200 и больше? В моей практике встречались десятки таких задач, и ручной подсчёт здесь уже не торт. Считаю нужным снять небольшое видео:

Как быстро составить ИВР при большом объёме выборки? (Ютуб)

Ну, теперь вы монстры 8-го уровня 🙂

Но не всё так сурово. В большинстве задач вам предложат готовый вариационный ряд, и на счёт молока, то, конечно, была шутка:

Выборочная проверка партии чая, поступившего в торговую сеть, дала следующие результаты:

Требуется построить гистограмму и полигон относительных частот, эмпирическую функцию распределения

Проверяем свои навыки работы в Экселе! (исходные числа и краткая инструкция прилагается) И на всякий случай краткое решение для сверки в конце урока.

Что ещё важного по теме? Время от времени встречаются ИВР с открытыми крайними интервалами, например:

В таких случаях, что убийственно логично, интервалы «закрывают». Обычно поступают так: сначала смотрим на средние интервалы и выясняем длину частичного интервала: км. И для дальнейшего решения можно считать, что крайние интервалы имеют такую же длину: от 140 до 160 и от 200 до 220 км. Тоже логично. Но уже не убийственно:)

Ну вот, пожалуй, и вся практически важная информация по ИВР.

На очереди числовые характеристики вариационных рядов и начнём мы с их центральных характеристик, а именно – Моды, медианы и средней.

До скорых встреч!

Решения и ответы:

Пример 7. Решение: заполним расчётную таблицу

Построим гистограмму и полигон относительных частот:

Построим эмпирическую функцию распределения:

Автор: Емелин Александр

(Переход на главную страницу)

Профессиональная помощь по любому предмету – Zaochnik.com

Источник

Adblock
detector