Как построить векторную диаграмму токов и напряжений
Векторные диаграммы — метод графического расчета напряжений и токов в цепях переменного тока, в которых переменные напряжения и токи символически (условно) изображаются с помощью векторов.
Поэтому всякое переменное напряжение (или переменный ток), меняющееся по синусоидальному закону, можно изображать с помощью такого вектора, вращающегося с угловой скоростью, равной угловой частоте изображаемого тока, причем длина вектора в определенном масштабе изображает амплитуду напряжения, а угол — начальную фазу этого напряжения.
Если рассмотреть электрическую цепь, состоящую из последовательно соединенных источника переменного тока, резистора, индуктивности и конденсатора, где U – мгновенное значение переменного напряжения, а i – это ток в текущий момент времени, причем U изменяется по синусоидальному (косинусоидальному) закону, то для тока можно записать:
Согласно закону сохранения заряда, в любой момент времени ток в цепи имеет одно и то же значение. Следовательно на каждом элементе будет падать напряжение: UR– на активном сопротивлении, UC – на конденсаторе, и UL – на индуктивности. Согласно второму правилу Кирхгофа, напряжение источника будет равно сумме падений напряжений на элементах цепи, и мы имеем право записать:
Заметим, что согласно закону Ома: I = U/R, и тогда U = I*R. Для активного сопротивления значение R определяется исключительно свойствами проводника, оно не зависит ни от тока, ни от момента времени, следовательно ток совпадает по фазе с напряжением, и можно записать:
Можно записать теперь сумму падений напряжений, но в общем виде для приложенного к цепи напряжения можно записать:
Видно, что здесь имеет место некий сдвиг фаз, связанный с реактивной составляющей общего сопротивления цепи при протекании по ней переменного тока.
Поскольку в цепях переменного тока и ток и напряжение изменяются по закону косинуса, причем мгновенные значения отличаются между собой лишь фазой, то физики придумали в математических расчетах рассматривать токи и напряжения в цепях переменного тока как векторы, поскольку тригонометрические функции можно описать через векторы. Итак, запишем напряжения в виде векторов:
Используя метод векторных диаграмм, можно вывести, например, закон Ома для данной последовательной цепи в условиях протекания по ней переменного тока.
Согласно закону сохранения электрического заряда, в любой момент времени ток во всех частях данной цепи одинаков, так отложим же векторы токов, построим векторную диаграмму токов:
Пусть в направлении оси Х будет отложен ток Im – амплитудное значение тока в цепи. Напряжение на активном сопротивлении совпадает по фазе с током, значит эти векторы будут сонаправленными, отложим их из одной точки.
Напряжение на конденсаторе отстает на Пи/2 от тока, следовательно откладываем его под прямым углом вниз, перпендикулярно вектору напряжения на активном сопротивлении.
Напряжение на катушке опережает на Пи /2 ток, следовательно откладываем его под прямым углом вверх, перпендикулярно вектору напряжения на активном сопротивлении. Допустим, что для нашего примера UL>UC.
Поскольку мы имеем дело с векторным уравнением, сложим векторы напряжений на реактивных элементах, и получим разницу. Она будет для нашего примера (мы приняли что UL>UC) направлена вверх.
Прибавим теперь вектор напряжения на активном сопротивлении, и получим, по правилу векторного сложения, вектор суммарного напряжения. Так как брали максимальные значения, то и получим вектор амплитудного значения общего напряжения.
Так как ток менялся по закону косинуса, то напряжение тоже меняется по закону косинуса, но со сдвигом фаз. Между током и напряжением есть постоянный сдвиг фаз.
Запишем закон Ома для общего сопротивления Z (импеданса):
Из векторных изображений по Теореме Пифагора можем записать:
После элементарных преобразований получим выражение для полного сопротивления Z цепи переменного тока, состоящей из R, C и L:
Тогда получим выражение для закона Ома для цепи переменного тока:
Заметим, что наибольшее значение тока получатся в цепи при резонансе в условиях, когда:
Косинус фи из наших геометрических построений получается:
Источник
Занятие 44 Резонанс напряжений
Схема последовательного соединения активного сопротивления, катушки индуктивности и конденсатора приведена на рис.44.1.
Рис. 44.1. Схема последовательного соединения активного сопротивления, катушки индуктивности и конденсатора
При последовательном соединении трех элементов R, L, C векторная диаграмма выглядит следующим образом: вектор тока в цепи I отложен горизонтально, с ним совпадает вектор напряжения на активном сопротивлении UR , вектор напряжения на индуктивности U L направлен вверх, а вектор напряжения на емкости UC направлен вниз.
Рис.44.2. Векторная диаграмма напряжений при последовательном соединении активного сопротивления, катушки индуктивности и конденсатора.
Если падение напряжения на индуктивном сопротивлении больше, чем на емкостном, то результирующий вектор будет опережать вектор тока на какой-то угол φ. В этом случае говорят, что цепь имеет индуктивный характер. (см.рис.44.3.)
Рис.44.3. Векторная диаграмма цепи с индуктивным характером.
Если падение напряжения на емкостном сопротивлении больше, чем на индуктивном, то вектор результирующего напряжения будет отставать от вектора тока на какой –то угол φ. В этом случае говорят, что цепь носит емкостный характер. (см. рис.44. 4.)
Рис.44.4. Векторная диаграмма цепи с емкостным характером.
В общем случае уравнение напряжений в цепи будет равно:
.
а уравнение сопротивлений :
Особенностью последовательного соединения активного сопротивления, емкости и индуктивности является возможность возникновения резонанса напряжений.
Представим, что в цепи с последовательно соединенными активным сопротивлением, емкостью и индуктивностью, частота тока увеличивается от частоты f1 до частоты f2. (см. рис. 44.5.)
Рис.44.5. Изменение реактивных сопротивлений при изменении частоты тока.
При увеличении частоты тока в цепи емкостное сопротивление уменьшается, а индуктивное увеличивается. При каком – то значении частоты тока емкостное сопротивление становится равным индуктивному сопротивлению. Эта частота называется резонансной. Явления, происходящие в цепи с последовательно соединенными R,L,C при резонансной частоте называются резонансом напряжения.
Условием резонанса является равенство реактивных сопротивлений XL = XC или
Отсюда значение резонансной частоты определиться
, при резонансе, когда XL = XC, полное сопротивление цепи будет равно :
или Z = R
Таким образом полное сопротивление цепи при резонансе оказывается равным активному сопротивлению.
Уменьшение полного сопротивления цепи приводит к тому, что сила тока в ней возрастает.
.На векторной диаграмме при резонансе (см.рис.44. 6) векторы напряжений на реактивных элементах равны друг другу и направлены в противоположные стороны. т. е. сдвинуты по фазе относительно друг друга на угол 180 градусов. Угол сдвига фаз между током и напряжением в сети равен нулю.
Рис.44.6. Векторная диаграмма при резонансе напряжений.
Рис.44.7. Изменение тока в цепи при резонансе.
Источник