Меню

Построить векторы показать что они компланарны

Компланарность векторов. Условия компланарности векторов.

рис. 1

Всегда возможно найти плоскости параллельную двум произвольным векторам, по этому любые два вектора всегда компланарные.

Условия компланарности векторов

Примеры задач на компланарность векторов

Решение: найдем смешанное произведение векторов

Ответ: вектора не компланарны так, как их смешанное произведение не равно нулю.

Решение: найдем смешанное произведение векторов

Ответ: вектора компланарны так, как их смешанное произведение равно нулю.

Решение: найдем количество линейно независимых векторов, для этого запишем значения векторов в матрицу, и выполним над ней элементарные преобразования

1 1 1
1 2
-1 1
3 3 3

из 2-рой строки вычтем 1-вую; из 4-той строки вычтем 1-вую умноженную на 3

1 1 1 1 1 1

к 3-тей строке добавим 2-рую

1 1 1

Так как осталось две ненулевые строки, то среди приведенных векторов лишь два линейно независимых вектора.

Ответ: вектора компланарны так, как среди приведенных векторов лишь два линейно независимых вектора.

Источник

Компланарные векторы

Загрузи старые работы и получи вознаграждение

Оплачиваем ваши усилия

Что такое компланарные векторы

Векторы называются компланарными, если лежат в одной или параллельных плоскостях.

Это определение справедливо только для трех и более векторов, так как для двух направленных отрезков всегда можно найти плоскость, параллельную им.

Условия компланарности и линейная зависимость векторов

Среди условий компланарности векторов встречается понятие линейной зависимости, которое следует разобрать перед тем, как перейти непосредственно к условиям.

Линейная зависимость

Линейная комбинация — вектор, составленный из суммы векторов \(\overline,\;\overline,\;\dots\;,\;\overline\;\) и коэффициентов разложения \(\lambda_<1,>\;\lambda_2,\;\dots\;,\;\lambda_n.\)

Существует пять критериев и свойств линейной зависимости векторов:

Условия компланарности

Для неограниченного числа векторов справедливо следующее: если среди них есть не более двух линейно независимых векторов, то они компланарны.

На практике чаще всего встречаются задачи с тройками векторов. Для них существуют и другие условия компланарности:

Теоремы, связанные с условием компланарности трех векторов

Правило, согласно которому три вектора компланарны, если их смешанное произведение равно нулю, проистекает из теоремы. Его также называют признаком и критерием компланарности векторов. Доказать данное утверждение можно следующим образом:

Читайте также:  Как построить бюджетное ограничение

В то же время, результатом векторного произведения является вектор, перпендикулярный перемножаемым. Таким образом, векторы \overline a,\overline b,\overline c перпендикулярны одному и тому же вектору (\overline a\times\overline b), то есть лежат в параллельных плоскостях. Значит, векторы компланарны.

Для проверки, к доказательству данной теоремы можно подойти с другой стороны:

Пусть векторы \overline a,\overline b,\overline c компланарны.

Необходимо доказать, что их смешанное произведение \((\overline a\times\overline b)\cdot\overline c\) равняется нулю. Так как данные вектора компланарны, то \((\overline a\times\overline b)\) перпендикулярен каждому из них.

Отсюда следует, что его скалярное произведение с вектором \overline c будет равняться нулю. Это, в свою очередь, означает, что смешанное произведение \((\overline a\times\overline b)\cdot\overline c=0.\)

Пример задачи на компланарность векторов

Задача

Решение

Сперва необходимо построить на основе имеющихся точек векторы \(\overline,\;\overline,\;\overline:\)

Чтобы проверить, принадлежать ли точки одной плоскости, необходимо найти смешанное произведение полученных векторов. Если оно равняется нулю, то векторы компланарны, следовательно, точки лежат в одной плоскости. В противном случае ответ на поставленный в условии вопрос будет отрицательным.

Смешанное произведение рассчитывается по формуле нахождения определителя матрицы:

Полученное число не равно нулю, следовательно, векторы некомпланарны. Это значит, что точки не лежат в одной плоскости.

Получите помощь лучших авторов по вашей теме

Источник

Какие векторы называют компланарными

Компланарные векторы – это векторы, которые лежат в одной плоскости, или параллельны какой-либо плоскости.

Рассмотрим три вектора в трехмерном пространстве. Любые два из них будут компланарными всегда. Поэтому, компланарность проверяют минимум для трех векторов.

Почему любые два вектора всегда компланарны

Поясним факт, что любые два вектора будут компланарными.

Для начала вспомним, какие векторы называют равными. Равны векторы, у которых совпадают три характеристики: длина, направление, соответственные координаты.

Читайте также:  Как построить столбчатую диаграмму по географии

При параллельном переносе вектор не поворачивается. Этот новый вектор \( \vec> \) будет иметь те же длину, направление и координаты, что и начальный вектор до сдвига. Другими словами, с помощью параллельного переноса можно получить вектор, равный данному вектору.
\[ \vec = \vec> \]

Если два вектора равны, то вместо одного из них мы сможем использовать второй, когда это будет удобным для нас.

Проделаем теперь те же операции с каким-либо другим вектором \( \vec \). В результате получим вектор \( \vec> \), равный вектору \( \vec \).

Любые два вектора можно параллельным переносом сдвинуть так, чтобы совместить их начальные, или конечные точки. Значит, через эти векторы можно провести пересекающиеся прямые. А такие прямые будут лежать в одной плоскости.

Таким образом, любые два вектора всегда компланарны.

Например, любые два орта Декартовой прямоугольной системы координат компланарны, а тройка ортов – некомпланарные векторы. Подробнее об ортах тут (откроется в новой вкладке).

Условие компланарности

Найдем смешанное произведение трех векторов.

Если такое произведение будет равно нулю, то три вектора компланарные.

Условие компланарности векторов:
\[\large \boxed < \left( \vec, \vec , \vec \right) = 0 >\]

Как вычислить смешанное произведение

Смешанное произведение можно обозначить еще одним способом:

Результат смешанного произведения – это число. Если число равно нулю, то векторы компланарны.

Как применять смешанное произведение

Если три вектора не компланарны, то на них, как на сторонах, можно построить параллелепипед, или пирамиду.

С помощью смешанного произведения можно рассчитывать объемы параллелепипедов или треугольных пирамид, построенных на трех некомпланарных векторах.

Примечание:
Определитель может быть равен отрицательному числу. А объем может быть либо нулевым, либо положительным. Поэтому, если при вычислении объема определитель будет равен отрицательному числу, знак минус не учитываем.

Читайте также:  Сколько стоит построить крышную котельную

Рисунок 2 поясняет, как с помощью векторов на ребрах параллелепипеда можно рассчитать его объем

Рисунок 3 поясняет, как с помощью векторов на ребрах пирамиды можно рассчитать ее объем

Смешанное произведение векторов в физике — работа вращающей силы

Пусть цилиндрическое тело вращается под действием силы. Ось вращения проходит через ось симметрии тела.

Работа вращающей силы – это смешанное произведение векторов \( \vec <\omega>\), \(\vec < r>\) и \(\vec < F>\)

\[ \large \boxed < dA = \left( \vec\left[ \vec <\omega>, \vec \right] \right)\cdot dt >\]

Пояснения:

Линейная скорость – это векторное произведение радиуса окружности на угловую скорость:

Расстояние, \( \vec\) которое проходит точка при повороте на небольшой угол — – это произведение вектора линейной скорости на скалярную величину – время:
\[ \vec = v \cdot dt \]

Небольшая работа dA – это скалярное произведение вектора силы на вектор перемещения
\[ dA = \left( \vec \cdot \vec \right)\]

Источник

Компланарность векторов. Условия компланарности векторов.

рис. 1

Всегда возможно найти плоскости параллельную двум произвольным векторам, по-этому любые два вектора всегда компланарные.

Условия компланарности векторов

Примеры задач на компланарность векторов

Решение: найдем смешанное произведение векторов

Ответ: вектора не компланарны так, как их смешанное произведение не равно нулю.

Решение: найдем смешанное произведение векторов

Ответ: вектора компланарны так, как их смешанное произведение равно нулю.

Решение: найдем количество линейно независимых векторов, для этого запишем значения векторов в матрицу, и выполним над ней элементарные преобразования

1 1 1
1 2
-1 1
3 3 3

из 2-рой строки вычтем 1-вую; из 4-той строки вычтем 1-вую умноженную на 3

1 1 1 1 1 1

к 3-тей строке добавим 2-рую

1 1 1

Так как осталось две ненулевые строки, то среди приведенных векторов лишь два линейно независимых вектора.

Ответ: вектора компланарны так, как среди приведенных векторов лишь два линейно независимых вектора.

Источник

Adblock
detector