Меню

Построить вид слева выполнить изометрию

Чертежик

Метки

Построение третьего вида и изометрии с вырезом четверти

Построение третьего вида и изометрии с вырезом четверти заключается в определении и построении видимых и невидимых линий, которые необходимы для обозначения выреза данной фигуры.

Для того чтобы приступить необходимо задание. В качестве примера было выбрано это задание:

Рассмотрим более подробно шаг за шаг выполнение этого задания. Чертеж выполняется в следующей последовательности:

1.) Чертим вид спереди и вид сверху согласно заданию, указываем видимые и невидимые линии, затем переносим вспомогательные линии из вида сверху на вид слева. Вспомогательные линии строятся из крайних точек фигуры.

2.) Чертим вспомогательные линии из вида спереди на вид слева.

3.) Соединяем точки, полученные в результате пересечения вспомогательных линий.

4.) Чертим третий вид с соответствующими линиями чертежа, прочерчивая видимые и невидимые линии.

5.) Смотрим где есть пустоты в детали согласно линии на рисунке снизу и обозначаем их.

6.) Строим вырез согласно линии, указанной на рисунке. Смотрим где есть пустота и обозначаем ее.

7.) Обозначаем полую часть и неполую, т.е. чертим «штриховку».

8.) Приступаем к построению изометрии с вырезом, для этого необходимо начертить осевые линии.

9.) Как из видим из рисунка, размеры расположенные по осям на трех видах переносим на вид изометрии. Для лучшего представления следует начать с узора выреза.

10.) Применяя методы построения овала и переноса линий на вид изометрии строим остальную часть детали. 11.) Затем обводим соответствующими линиями деталь.

изометрия с вырезом четверти

12.) Указываем штриховыми линиями ту часть, которую вырезали.

Пример решения этого задания имеет общий принцип построения для всех заданий подобного вида.

В виду того что при выполнении подобных заданий студентами все равно допускаются ошибки, мои вышеперечисленные пошаговые подсказки может не каждый поймет, для таких случаев я предлагаю просмотреть видео, в котором задание решается последовательно с указанием всех линий, показано как перенести размеры из трех видовых проекций на вид изометрии.

Но все же чтобы закрепить необходимо выполнить самостоятельно подобные задания несколько раз.

Пример выполненного чертежа смотрите здесь.

Источник

Как начертить изометрию?

Практически все, кому довелось изучать черчение и инженерную графику сталкивались с необходимостью произвести построение изометрической проекции детали. В этом уроке мы попробуем разобрать основные моменты, которые нужно знать, чтоб начертить изометрию. Уверен, что повторив указанные в этом уроке шаги, вы сможете самостоятельно выполнить и более сложное задание. В вашей детали может быть большее количество построений, но основные принципы останутся неизменными. Но при этом оговорюсь, что построение изометрии скорее всего будет вам не под силу, если вы еще не освоили построение третьего вида и построение простого разреза. Вы должны уже уметь хорошо ориентироваться в трех видах на чертеже.

Читайте также:  Построить аккорды в тональности ми минор

Начнем с того, что определимся с направлением осей в изометрии.

На этом закончим вступительную часть и начнем непосредственно построение изометрической проекции детали. Возьмем для примера не очень сложную деталь. Это параллелепипед 50х60х80мм, имеющий сквозное вертикальное отверстие диаметром 20 мм и сквозное прямоугольное отверстие 50х30мм.

Начнем построение изометрии с вычерчивания верхней грани фигуры. Расчертим на требуемой нам высоте тонкими линиями оси Х и У. Из получившегося центра отложим вдоль оси Х 25 мм (половина от 50) и через эту точку проведем отрезок параллельный оси У длиной 60 мм. Отложим по оси У 30 мм (половина от 60) и через полученную точку проведем отрезок параллельный оси Х длиной 50 мм. Достроим фигуру.

Как видим из получившегося чертежа, сечения полностью повторяют контур разрезов на видах (смотри соответствие плоскостей обозначенных цифрой 1), но при этом они вычерчены параллельно изометрическим осям. Сечение же второй плоскостью повторяет разрез выполненный на виде слева (в данном примере этот вид мы не чертили).

Надеюсь, этот урок оказался полезным, и построение изометрии вам уже не кажется чем-то совершенно неведомым. Возможно, некоторые шаги придется прочитать по два, а то и по три раза, но в конечном итоге понимание должно будет прийти. Удачи вам в учебе!

Рекомендую посмотреть урок окружность в изометрии.

Источник

Выполнение прямоугольной изометрии, прямоугольной диметрии по заданным видам

Построение третьего вида по двум заданным

При построение вида слева, представляющего собой симметричную фигуру, за базу отсчета размеров проецируемых элементов детали берут плоскость симметрии, изображая её осевой линией.

Названия видов на чертежах, выполненных в проекционной связи, не указываются.

Построение аксонометрических проекций

Для наглядных изображений предметов, изделий и их составных частей единой системы конструкторской документации (ГОСТ 2.317-69) рекомендуется применять пять видов аксонометрических проекций: прямоугольные – изометрическую и диметрическую проекции, косоугольные – фронтальную изометрическую, горизонтальную изометрическую и фронтальную диметрическую проекции.

По ортогональным проекциям любого предмета всегда можно построить его аксонометрическое изображение. При аксонометрических построениях используются геометрические свойства плоских фигур, особенности пространственных форм геометрических тел и расположение их относительно плоскостей проекций.

Общий порядок построения аксонометрических проекций следующий:

1. Выбирают оси координат ортогональной проекции детали;

2. Строят оси аксонометрической проекции;

3. Строят аксонометрическое изображение основной формы детали;

4. Строят аксонометрическое изображение всех элементов, определяющих действительную форму данной детали;

5. Строят вырез части данной детали;

6. Проставляют размеры.

Прямоугольная геометрическая проекция

Положение оси в прямоугольной изометрической проекции приведено на рис. 17.12. Действительные коэффициенты искажения по осям равны 0,82. В практике пользуются приведенными коэффициентами, равными 1. При этом изображения получаются увеличенными в 1,22 раза.

Читайте также:  Как построить шар в кубе

Способы построения осей изометрии

Направление аксонометрических осей в изометрии можно получить несколькими способами (см. рис. 11.13).

Первый способ – с помощью угольника в 30°;

Второй способ – разделить циркулем окружность произвольного радиуса на 6 частей; прямая О1 – ось ох, прямая О2 – ось оy.

Третий способ – построить отношение частей 3/5; по горизонтальной линии отложить пять частей (получим точку М) и вниз три части (получим точку К). Полученную точку К соединить с центром О. ÐКОМ равен 30°.

Способы построения плоских фигур в изометрии

Для того, чтобы правильно построить изометрическое изображение пространственных фигур необходимо уметь строить изометрию плоских фигур. Для построения изометрических изображений надо выполнить следующие действия.

1. Дать соответствующее направление осям ох и оу в изометрии (30°).

2. Отложить на осях ох и оу натуральные (в изометрии) или сокращенные по осям (в диметрии – по оси оу) величины отрезков (координаты вершин точек.

3. Полученные точки соединить.

Так как построение производится по приведенным коэффициентам искажения, то изображение получается с увеличением:

для изометрии – в 1,22 раза;

ход построения дан на рис 11.14.

На рис. 11.14а даны ортогональные проекции трех плоских фигур – шестиугольника, треугольника, пятиугольника. На рис. 11.14б построены изометрические проекции этих фигур в разных аксонометрических плоскостях – хоу, уоz.

Построение окружности в прямоугольной изометрии

В прямоугольной изометрии эллипсы, изображающие окружность диаметра d в плоскостях хоу, хоz, yoz, одинаковы (рис. 11.15). Причем большая ось каждого эллипса всегда перпендикулярна той координатной оси, которая отсутствует в плоскости изображаемой окружности. Большая ось эллипса АВ = 1,22d, малая ось CD = 0.71d.

При построении эллипсов через их центры проводят направления большой и малой осей, на которых соответственно откладывают отрезки АВ и СD и прямые, параллельные осям аксонометрии, на которых откладывают отрезки MN, равные диаметру изображаемой окружности. Полученные 8 точек соединяют по лекалу.

В техническом черчении при построении аксонометрических проекций окружностей эллипсы допускается заменять овалами. На рис. 11.15 показано построение овала без определения большой и малой осей эллипса.

Построение прямоугольной изометрической проекции детали, заданной ортогональными проекциями, производиться в следующем порядке.

1. На ортогональных проекциях выбирают оси координат, как показано на рис. 11.17.

2. Строят ось координат x, y, z в изометрической проекции (рис. 11.18)

3. Строят параллелепипед – основание детали. Для этого от начала координат по оси х откладывают отрезки ОА и ОВ, соответственно равные отрезкам о1а1 и о1b1 на горизонтальной проекции детали (рис. 11.17) и получают точки А и В.

Через точки А и В проводят прямые, параллельные оси y, и откладывают отрезки, равные половине ширины параллелепипеда. Получают точки D, C, J, V, которые являются изометрическими проекциями вершин нижнего прямоугольника. Точки С и V, D и J соединяют прямыми, параллельными оси х.

Читайте также:  Как построить многощипцовую крышу своими руками

5. Строят изометрическое изображение ребра жесткости. От точки О1 по оси х1 откладывают отрезок О1Е, равный ое. Через точку Е проводят прямую параллельную оси у и откладываю в обе стороны отрезок, равный половине ширины ребра (еk и ef). Получают точки К и F. Из точек К, E, F проводят прямые, параллельные оси х1 до встречи с эллипсом (точки P, N, M). Проводят прямые, параллельные оси z (линии пересечения плоскостей ребра с поверхность цилиндра), и на них откладывают отрезки PТ, MQ и NS, равные отрезкам р3t3, m3q3, n3s3. Точки Q, S, T соединяют и обводят по лекалу, от точки K, T и F, Q соединяют прямыми.

6. Строят вырез части заданной детали.

Удаляют все невидимые линии и линии построения и обводят контурные линии.

7. Проставляют размеры.

Для нанесения размеров выносные и размерные линии проводят параллельно аксонометрическим осям.

Прямоугольная диметрическая проекция

Построение координатных осей для диметрической прямоугольной проекции показано на рис. 11.20.

Для диметрической прямоугольно проекции коэффициенты искажения по осям х и z равны0,94, по оси у – 0,47. В практике пользуются приведенными коэффициентами искажения: по осям х и z приведенный коэффициент искажения равен 1, по оси у – 0,5. При этом изображение получается в 1,06 раза.

Способы построения плоских фигур в диметрии

Для того, чтобы правильно построить диметрическое изображение пространственной фигуры, надо выполнить следующие действия:

1. Дать соответствующее направление осям ох и оу, в диметрии (7°10¢; 41°25¢).

2. Отложить по осям х, z натуральные, а по оси у сокращенные согласно коэффициентам искажения величины отрезков (координаты вершин точек).

3. Полученные точки соединить.

Ход построения дан на рис. 11.21. На рис. 11.21а даны ортогональные проекции трех плоских фигур. На рис 11.21б построение диметричеких проекций этих фигур в разных аксонометрических плоскостях – хоу; уоz/

Построение окружности прямоугольной диметрии

Аксонометрическая проекция окружности представляет собой эллипс. Направление большой и малой оси каждого эллипса указано на рис. 11.22. Для плоскостей, параллельных горизонтальной (хоу) и профильной (уоz) плоскостям, величина большой оси равна 1,06d, малой – 0,35d.

Для плоскостей, параллельных фронтальной плоскости хоz, величина большой оси равна 1,06d, а малой – 0,95d.

В техническом черчении при построении окружности эллипсы допускается заменить овалами. На рис. 11.23 показано построение овала без определения большой и малой осей эллипса.

Принцип построения диметрической прямоугольной проекции детали (рис. 11.24) аналогичен принципу построения изометрической прямоугольной проекции, приведенной на рис 11.22 с учетом коэффициента искажения по оси у.

.1

Дата добавления: 2014-12-16 ; Просмотров: 19111 ; Нарушение авторских прав?

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Adblock
detector