Меню

Сложение ускорений относительное переносное как построить

Сложное движение точки. Теорема Кориолиса

Здесь мы покажем, что при сложном движении, абсолютная скорость точки равна векторной сумме относительной и переносной скоростей:
.
Абсолютное ускорение точки равно векторной сумме относительного, переносного и кориолисова (поворотного) ускорений:
,
где – кориолисово ускорение.

Пример применения изложенной ниже теории приводится на странице “Сложное движение точки. Пример решения задачи”.

Сложное (составное) движение точки

Часто встречаются случаи, когда точка совершает известное движение относительно некоторого твердого тела. А это тело, в свою очередь, движется относительно неподвижной системы координат. Причем движение точки относительно тела и закон движения тела относительно неподвижной системы координат известны или заданы. Требуется найти кинематические величины (скорость и ускорение) точки относительно неподвижной системы координат.

Такое движение точки называется сложным или составным.

Сложное или составное движение точки – это движение в подвижной системе координат. То есть движение точки описывается в системе координат, которая сама совершает движение относительно неподвижной системы координат.

Далее, для ясности изложения, будем считать, что подвижная система координат жестко связана с некоторым твердым телом. Мы будем рассматривать движение точки относительно тела (относительное движение) и движение тела относительно неподвижной системы координат (переносное движение).

Относительное движение точки при сложном движении – это движение точки относительно тела (подвижной системы координат) считая, что тело покоится.

Переносное движение точки при сложном движении – это движение точки, жестко связанной телом, вызванное движением тела.

Абсолютное движение точки при сложном движении – это движение точки относительно неподвижной системы координат, вызванное движением тела и движением точки относительно тела.

Относительная скорость и ускорение

Относительная скорость точки при сложном движении – это скорость точки при неподвижном положении тела (подвижной системы координат), вызванная движением точки относительно тела.

Читайте также:  Дом в пензе под ключ построить славянская

Относительное ускорение точки при сложном движении – это ускорение точки при неподвижном положении тела, вызванное движением точки относительно тела.

Переносная скорость и ускорение

Переносная скорость точки при сложном движении – это скорость точки, жестко связанной с телом, вызванная движением тела.

Переносное ускорение точки при сложном движении – это ускорение точки, жестко связанной с телом, вызванное движением тела.

Подставляем в (4):

.
Таким образом, выражение (4) приводит к формуле для скорости точек твердого тела.

Выполняя подобные преобразования над формулой (5), получим формулу для ускорения точек твердого тела:
,
где – угловое ускорение тела.

Абсолютная скорость и ускорение

Абсолютная скорость точки при сложном движении – это скорость точки в неподвижной системе координат.

Абсолютное ускорение точки при сложном движении – это ускорение точки в неподвижной системе координат.

Теорема о сложении скоростей

При составном движении абсолютная скорость точки равна векторной сумме относительной и переносной скоростей:
.

Доказательство

Дифференцируем (1) по времени, применяя правила дифференцирования суммы и произведения. Затем подставляем (2) и (4).
(1) ;
(7)
.

Теорема Кориолиса о сложении ускорений

При составном движении абсолютное ускорение точки равно векторной сумме относительного, переносного и кориолисова (поворотного) ускорений:
,
где
– кориолисово ускорение.

Доказательство

В последнем члене применим (6) и (2).

.
Тогда
.

Источник

Сложение ускорений при поступательном переносном движении.

Сложное движение точки

Основные понятия

Во многих задачах движение точки приходится рассматривать относительно двух (и более) систем отсчета, движущихся друг относительно друга.

В простейшем случае сложное движение точки состоит из относительного и переносного движений. Определим эти движения.

Рассмотрим две системы отсчета движущиеся друг относительно друга. Одну систему отсчета O1x1y1z1 примем за основную и неподвижную. Вторая система отсчета Oxyz будет двигаться относительно первой.

Читайте также:  Кто построил церковь николы на липне

Движение точки относительно подвижной системы отсчета Oxyz называется относительным. Характеристики этого движения, такие как, траектория, скорость и ускорение, называются относительными. Их обозначают индексом r.

Движение точки относительно основной неподвижной системы отсчета O1x1y1z1называется абсолютным (или сложным). Траектория, скорость и ускорение этого движения называются абсолютными. Их обозначают без индекса.

Переносным движением точки называется движение, которое она совершает вместе с подвижной системой отсчета, как точка, жестко скрепленная с этой системой в рассматриваемый момент времени. Вследствие относительного движения движущаяся точка в различные моменты времени совпадает с различными точками тела S, с которым скреплена подвижная система отсчета. Переносной скоростью и переносным ускорением являются скорость и ускорение той точки тела S, с которой в данный момент совпадает движущаяся точка. Переносные скорость и ускорение обозначают индексом e.

Если траектории всех точек тела S, скрепленного с подвижной системой отсчета, изобразить на рисунке, то получим семейство линий – семейство траекторий переносного движения точки М. Вследствие относительного движения точки М в каждый момент времени она находится на одной из траекторий переносного движения.

Одно и то же абсолютное движение, выбирая различные подвижные системы отсчета, можно считать состоящим из разных переносных и соответственно относительных движений.

Сложение скоростей

Определим скорость абсолютного движения точки М, если известны скорости абсолютного и переносного движений этой точки.


За малый промежуток времени вдоль траектории точка М совершит относительное перемещение, определяемое вектором . Сама кривая , двигаясь вместе с подвижными осями, перейдет за тот же промежуток времени в новое положение Одновременно та точка кривой , с которой совпадала точка М, совершит переносное перемещение . В результате точка совершит перемещение .

Деля обе части равенства на и переходя к пределу, получим

Читайте также:  Когда в твери построят метро

Сложение ускорений при поступательном переносном движении.

Определим ускорение абсолютного движения точки в частном случае поступательного переносного движения.

Справедлива теорема . Если подвижная система отсчета движется поступательно относительно неподвижной , то все точки тела, скрепленного с этой системой, имеют одинаковые скорости и ускорения, равные скорости и ускорению начала координат подвижной системы О. Следовательно, для скорости и ускорения переносного движения имеем

,

Выразим относительную скорость в декартовых координатах

Подставляя в теорему о сложении скоростей значения переносной и относительной скоростей получаем

По определению

, , .

Следовательно,

Абсолютное ускорение точки при поступательном переносном движении равно векторной сумме ускорений переносного и относительного движений.

Теорема о сложении ускорений (теорема Кориолиса): , где – ускорение Кориолиса (кориолисово ускорение) – в случае непоступательного переносного движения абсолютное ускорение = геометрической сумме переносного, относительного и кориолисова ускорений. Кориолисово ускорение характеризует: 1) изменение модуля и направления переносной скорости точки из-за ее относительного движения; 2) изменение направления относительной скорости точки из-за вращательного переносного движения. Модуль ускорения Кориолиса: ас= 2×|we×vr|×sin(we ^ vr), направление вектора определяется по правилу векторного произведения, или по правилу Жуковского: проекцию относительной скорости на плоскость, перпендикулярную переносной угловой скорости, надо повернуть на 90 о в направлении вращения.

Источник

Adblock
detector